Technical University of Denmark
Browse (518.62 MB)

Deep De-Homogenization: synthetic orientation fields

Download (518.62 MB)
posted on 2021-11-16, 08:22 authored by Niels AageNiels Aage, Ole SigmundOle Sigmund, Jakob Andreas BærentzenJakob Andreas Bærentzen, Martin Ohrt Elingaard
Data - in zipped form - related to the synthetic orientation fields used in:

Elingaard, M. O., Aage, N., Bærentzen, J. A., & Sigmund, O. (2022). De-homogenization using convolutional neural networks. Computer Methods in Applied Mechanics and Engineering, 388, 114197.

The dataset is split into a training and test set. The training set contains 10.000 orientation fields, while the test set contains 1000 orientation fields. Each orientation field is saved as .npy file, and can be loaded in python using the numpy.load function (


InnoTop Villum Investigator project