Technical University of Denmark
Browse

Multimetallic OER Catalyst Discovery Dataset from Autonomous Robotic Synthesis and Electrochemical Characterization

dataset
posted on 2025-06-27, 08:49 authored by Nis Fisker-Bødker, Jin Hyun Chang, Enzo Raffaele MorettiEnzo Raffaele Moretti, Tejs Vegge
<p dir="ltr">Datasets from experimentation on the <i>FastCat</i> robotic platform with alkaline nickel catalyst with dopants Cr Al Fe Co Mn Ni Cu Zn. In total 502 experiment and in total 7449 datasets and 22.901 attributes related to the experiments (eg. temperature, humidity, pressure, date, etc.)<br></p><p dir="ltr">This dataset supports the publication "Autonomous Discovery of Multielement LDH Alloy Catalysts for Alkaline OER" in Advanced Intelligent Discovery 2025. It presents data from the platform <i>FastCat</i> based on the N9 from North Robotics which was used for the synthesis of OER catalyst for alkaline water splitting using Ni, Fe, Cr, Co, Mn, Cu, Al, Zn metal nitrates, in combination with Nickel foam substrates, forming Ni'X' Layered Double Hydroxides (LDH).</p><h3>The dataset in the HDF5 container comprehensively includes all data and scripts related to the synthesized catalysts. The easiest is to go to README.md and afterwards run the main.py which will execute all python files. This will in essence plot data and combine metadata into a metadata.xlsx file for manual investigation of key parameters.<br><br><b>How to refer to this dataset?</b></h3><p dir="ltr">Use this citation when citing the dataset:<br>Fisker-Bødker, Nis (2025). <i>Multimetallic OER Catalyst Discovery Dataset from Autonomous Robotic Synthesis and Electrochemical Characterization</i>. Technical University of Denmark. Dataset. https://doi.org/10.11583/DTU.28494185<br><br>Kindly also consider to cite the related paper: <br>Fisker-Bødker, Nis, <i>Autonomous Discovery of Multielement LDH Alloy Catalysts for Alkaline OER</i>, Advanced Intelligent Discovery, 2025.</p><h3><b>Use Cases of the Dataset</b></h3><p dir="ltr">This dataset provides a rich, structured collection of <b>electrochemical measurements</b> and <b>experimental metadata</b> across a systematically varied composition space of multimetal oxide catalysts. Its design supports several advanced use cases:</p><h4><b>1. Machine Learning for Materials Optimization</b></h4><p dir="ltr">The dataset is ideally suited for <b>supervised ML</b> tasks such as:</p><ul><li><i>Regression</i>: Predicting catalytic performance metrics (e.g., overpotential at given current densities) from composition and synthesis parameters.</li><li><i>Classification</i>: Identifying high-performance vs. low-performance catalysts.</li><li><i>Bayesian optimization</i>: Guiding autonomous experimentation through learned surrogate models that predict outcomes and uncertainties.</li><li><i>Feature attribution</i>: Understanding which compositional or procedural variables most affect performance (e.g., using SHAP, LIME).</li></ul><p dir="ltr">The <i>temporal structure</i>, <i>replicated measurements</i>, and <i>detailed metadata</i> (e.g., temperature, pressure, precursor treatment) also allow:</p><ul><li>Uncertainty quantification</li><li>Learning causal relationships</li><li>Generalization to out-of-sample compositions</li></ul><h4><b>2. Experimental Validation of DFT Predictions</b></h4><p dir="ltr">The dataset is valuable for <i>validating or calibrating DFT-predicted trends</i>:</p><ul><li><b>Benchmarking</b>: Compare experimentally measured overpotentials with theoretical <i>OER energetics</i> (e.g., ΔG for *OH, *O, *OOH intermediates).</li><li><b>Descriptor modeling</b>: Use DFT-derived properties (e.g., d-band center, charge transfer) as inputs and correlate with experimental outcomes.</li><li><b>Data fusion</b>: Combine DFT and experimental data into joint models (e.g., via multi-fidelity Gaussian processes or co-kriging).</li><li><b>Inverse design</b>: Use experimental performance labels to train models that prioritize DFT screening of unexplored compositions.</li></ul><h4><b>3. Structure–Property Relationship Mapping</b></h4><p dir="ltr">The granularity of your dataset enables building interpretable structure–property models:</p><ul><li>Relate <i>precursor ratios</i> and <i>processing conditions</i> to final electrocatalytic behavior</li><li>Investigate <i>sensitivity to impurities, synthesis duration, or environmental factors</i></li><li>Map non-linear or coupled effects (e.g., Cr–Fe–Ni synergistic behavior)</li></ul><h3><b>Dataset Structure</b></h3><pre><pre>�� root (HDF5)<br>├── �� keyParameters<br>├── �� ...<br>├── �� 899_Cr0.05_Al0.05_Fe0.35_Co0.55_Mn0.0_Ni0.0_V0.0_FeCl0.55<br>│ ├── �� Attributes<br>│ ├── �� 0EISacv<br>│ ├── �� 0CVact0.2mVsx25<br>│ ├── �� 1CVact0.01mVsx1<br>│ ├── �� 2CVact0.2mVsx100<br>│ ├── �� 3CVact0.05mVsx3<br>│ ├── �� 4CVact0.075mVsx3<br>│ ├── �� 5CVact0.1mVsx3<br>│ ├── �� 6CVact0.15mVsx3<br>│ ├── �� 7CVact0.2mVsx3<br>│ ├── �� 8EISacv<br>│ ├── �� 9CP100.0mA<br>│ ├── �� 10CP50.0mA<br>│ ├── �� 11CP20.0mA<br>│ ├── �� 12CP10.0mA<br>│ ├── �� 13CP5.0mA<br>│ ├── �� 14CP2.0mA<br>│ ├── �� 15CP1.0mA<br>│ ├── �� 16CVact0.01mVsx1<br>├── �� ...<br>├── �� 1315_Cr0.0_Al0.15_Fe0.4_Co0.05_Mn0.0_Ni0.2_Cu0.2_Zn0.0<br>│ ├── �� Attributes<br>│ ├── �� 0EISacv<br>│ ├── �� 0CV0.4mVsx100<br>│ ├── �� 1CV0.01mVsx2<br>│ ├── �� 8EISacv<br>│ ├── �� 10CP50.0mA<br>│ ├── �� 11CP20.0mA<br>│ ├── �� 12CP10.0mA<br>│ ├── �� 13CP5.0mA<br>│ ├── �� 14CP2.0mA<br>│ ├── �� 15CP1.0mA</pre></pre><h3><br><b>Group Naming Convention</b></h3><p dir="ltr">Each group is named <b>UID</b>_<b>chemical composition</b>. The composition describes the dispensed % of each metal nitrate stock solution.</p><h3><b>Dataset Naming Convention</b></h3><p dir="ltr">Each dataset follows a convention where the <b>leading number</b> indicates the <i>acquisition order</i>.</p><ul><li><b>CVXX...</b> = <i>Cyclic Voltammetry</i></li><li><b>CPXX...</b> = <i>Chronopotentiometry</i>, where XX indicates the <i>applied current</i> (in mA)</li><li><b>EISacv</b> = <i>Electrochemical Impedance Spectroscopy</i></li></ul><h3><b>Column Descriptions</b></h3><p dir="ltr"><b>CV datasets</b> (<i>Cyclic Voltammetry</i>):</p><ul><li><i>Time (s)</i></li><li><i>Potential (WE vs. RHE) [V]</i></li><li><i>Vu (V)</i></li><li><i>Current [A]</i></li><li><i>Vsig</i></li><li><i>Ach (V)</i></li><li><i>IERange</i></li><li><i>Overbit1</i></li><li><i>Stop Test</i></li><li><i>Scan cycle</i></li><li><i>Temperature (C)</i></li></ul><p dir="ltr"><b>CP datasets</b> (<i>Chronopotentiometry</i>):</p><ul><li><i>Time [s]</i></li><li><i>Potential (WE vs. RHE) [V]</i></li><li><i>Vu (V)</i></li><li><i>Current [A]</i></li><li><i>Charge Q</i></li><li><i>Vsig</i></li><li><i>Ach (V)</i></li><li><i>IERange</i></li><li><i>Overbit1</i></li><li><i>Stop Test</i></li></ul><p dir="ltr"><b>EIS datasets</b> (<i>Impedance Spectroscopy</i>):</p><ul><li><i>Point</i></li><li><i>Time [s]</i></li><li><i>Freq</i></li><li><i>Zreal [ohm]</i></li><li><i>Zimag [ohm]</i></li><li><i>Zsig</i></li><li><i>Zmod</i></li><li><i>Zphz</i></li><li><i>Idc</i></li><li><i>Vdc</i></li><li><i>IERange</i></li></ul><h3><b>Attributes in Each Measurement Folder</b></h3><p dir="ltr">Each measurement group contains an <b>Attributes</b> object that stores metadata including:</p><ul><li><i>UID</i>, <i>Date</i>, <i>Group_name</i>, <i>composition (Cr, Al, Fe, Co, Mn, Ni, Cu, Zn)</i></li><li><i>Electrochemical parameters</i> (e.g., Potential @ XX A/cm², <i>ohmic resistance</i>)</li><li><i>Temperature, humidity, pressure</i> (initial, start, end)</li><li><i>Pre-treatment and synthesis steps</i> (e.g., oxide removal time, dip time, electrolyte used)</li><li><i>Status</i> (string indicating data quality or flag)</li></ul><h3><b>keyParameters Dataset</b></h3><p dir="ltr">A centralized summary table across all UIDs with:</p><ul><li><i>UID</i></li><li><i>Current [A/cm²]</i></li><li><i>Potential (uncorrected) [V]</i></li><li><i>Potential (ohmic-corrected) [V]</i></li><li><i>Ohmic resistance [Ω]</i></li></ul><p><br></p>

Funding

Velux Foundations through the research center V-Sustain (Grant 9455)

The Pioneer Center for Accelerating P2X Materials Discovery (CAPeX)

DNRF grant number P3 the Technical University of Denmark (DTU) through a Digital Ph.D. scholarship

The Independent Research Foundation Denmark (0217-00326B)

History

ORCID for corresponding depositor