Technical University of Denmark
Browse
.TAR
000xxx.tar (5.15 GB)
.TAR
001xxx.tar (6.67 GB)
.TAR
002xxx.tar (6.75 GB)
.TAR
003xxx.tar (5.94 GB)
.TAR
004xxx.tar (6.15 GB)
.TAR
005xxx.tar (6.81 GB)
.TAR
006xxx.tar (8 GB)
.TAR
007xxx.tar (7.63 GB)
.TAR
008xxx.tar (7.54 GB)
.TAR
009xxx.tar (7.93 GB)
.TAR
010xxx.tar (7.74 GB)
.TAR
011xxx.tar (7.57 GB)
.TAR
012xxx.tar (7.41 GB)
.TAR
013xxx.tar (7.91 GB)
.TAR
014xxx.tar (7.78 GB)
.TAR
015xxx.tar (7.8 GB)
.TAR
016xxx.tar (7.13 GB)
.TAR
017xxx.tar (7.53 GB)
.TAR
018xxx.tar (7.25 GB)
.TAR
019xxx.tar (7.08 GB)
1/0
141 files

QM9 Charge Densities and Energies Calculated with VASP

dataset
posted on 2022-08-24, 07:40 authored by Peter Bjørn Jørgensen, Arghya BhowmikArghya Bhowmik

QM9 molecules calculated with VASP using Atomic Simulation Environment with the following parameters:

Vasp(xc='PBE', istart=0, algo='Normal', icharg=2, nelm=180, ispin=1, nelmdl=6, isym=0, lcorr=True, potim=0.1, nelmin=5, kpts=[1,1,1], ismear=0, ediff=0.1E-05, sigma=0.1, nsw=0, ldiag=True, lreal='Auto', lwave=False, lcharg=True, encut=400)

The resulting CHGCAR files have been compressed with lz4 compression and packed in non-compressed tar archives with up to 1000 structures in each.


The datasplits json files contain the indices (0-index) of the train, validation and test sets used in the paper "Graph neural networks for fast electron density estimation of molecules, liquids, and solids"


The QM9 molecule structures were obtained from https://doi.org/10.6084/m9.figshare.c.978904.v5

Funding

VILLUM FONDEN research grant (00023105)

History

Usage metrics

    DTU Energy

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC