Outline of the Danish fisheries research/fishing industry survey for cod in the Kattegat 4nd quarter

November 2019

National Institute of Aquatic Resources Technical University of Denmark Charlottenlund Slot, DK-2920 Charlottenlund Denmark Marie Storr-Paulsen Peter Vingaard Fiskerivärket

Box 423, 401 26 , Göteborg Sweden Katja Ringdahl Johan Løvgren

Introduction

Since 2003 the cod fishery in Kattegat has been restricted by steadily decreasing quotas due to low abundance of cod estimated from the cod assessment. ICES consider, however, the cod assessment in Kattegat uncertain due to the catch data quality and the analytic assessment has not been accepted by ACFM in recent years. The assessment has shown a discrepancy between the estimated fishing mortality and the reported landings and ICES assumed that the majority of the unallocated mortality was caused by discard, but other factors such as migration, non reported landings and reallocation of catches also could be part of the problem. Furthermore, the surveys conducted at present in the Kattegat area are not very suited for estimation of cod abundance mainly due to the low coverage and sampling intensity. The abundance estimate in the areas is hence rather uncertain and only shows trends in stock development, and the assessment of the cod stock would, without doubt, benefit significantly from a survey directly aimed at cod. The 5 August 2006 a tender was submitted by Swedish Board of Fisheries, Institute of Marine Research (IMR-SE) in response to the open call for tenders, Reference No FISH/2006/15 Studies and Pilot projects for carrying out the common fisheries policy, Lot No 3: "Evaluation of the pilot effort regime in Kattegat" from Directorate-General for Fisheries and Maritime Affairs.

Both Swedish and Danish scientists and the fishermen's organisations aggress that the poor survey quality hampers the assessment of the cod stock in Kattegat and an expert group consisting of people from the fisherman's organisations and scientists has designed an improved survey. The initiative has been taken by the LOT 3 project group and was originally a strictly Swedish project. However, the involvement of Denmark has been considered as an improvement of the project and the survey has been designed in all details in agreement between fishers and scientists from both countries. The survey has been conducted since 2008 with a gap in 2012 and only Swedish vessels participating in 2013. The survey strata has been moderated slightly since 2013 to take into account the closed area very a separate strata has been placed.

The goal

The goal of the Kattegat cod survey is to estimate the abundance, biomass and distribution of cod and to establish a fisheries independent time series of catch and effort series. Furthermore, a recruitment index will be established. The results should be used, together with commercial catch and effort data to strengthen the scientific advice on the cod stock in Kattegat. The survey will also monitor the amount and distribution of cod within the proposed "closed area" in order to analyse the effect of the closure.

Restrictions

The 2 commercial Swedish trawlers participating in the survey conduct the survey without any restrictions in the vessels quota, days at sea regulation and with dispensation from all by-catch regulations. From Denmark the Danish scientific vessel Havfisken is participating.

Survey design

Survey area

The survey area is restricted to the Kattegat area covering from Skagen, to the Tistlarna lighthouse and in south by an south-eastwards line between Ellekilde Hage and Lerbjerg and south-westwards by a line between Gniben og Hassensør on Djursland. Further, the area is restricted by the 20 m depth contour line and the area is split in areas "North" and "South" (Fig. 1). However, in two fjords Laholmsbugten and Skældervigen fishing at stations shallower than 20

meter will take place and 1 or two stations will be placed in a small area in The Sound "Kilen".

Survey method and stratification

The survey is designed as a random stratified bottom trawl survey. The survey area is since 2013 stratified in four strata: a stratum with high cod density, a stratum with medium density and a stratum with low cod density based on information from the fishers a forth strata has been designate to make sure not stations are placed within the closed area. Each stratum is further subdivided in 5*5 nm squares. Most stations according to the area are allocated to the high density stratum. In the forthcoming years stations will be allocated to the different strata in order to minimize the variance of the estimation of the cod biomass. The survey design allows a post-stratification of the survey area if necessary without loosing comparability with previous surveys and hence to take changes in the main focus area into account if the stock distribution is changing between years or the stock is increasing or decreasing.

Station (tow) location

The survey is planed with in average 3.3 trawl hauls per day in 6 days for each of the vessels i.e in total 80 trawl hauls. The hauls are allocated randomly to the 5*5 nm squares and each vessel is allocated 20 different squares. In the high and medium density strata several vessels are allowed to fish in the same square. In the low density stratum only one haul is allowed in each square. Furthermore the low density area is divided in a Southern and Northern area.

Ship	High density	Medium density	Low density	Low density	Closed	Total
			(South)	(North)	area	
DK	12	10	7	7	4	40
Havfisken						
SE	6	5	7		2	20
Tärnan						
SE Cindy	6	5		7	2	20

	Numbers	of	stations	by	vessel.	stratum	and a	rea
--	---------	----	----------	----	---------	---------	-------	-----

Stations valid for Havfisken 4Q 2019

Nr	Stationer	Område1	Område2			DK Havfisk	en
1	1 39	Röd	Nord	57.36890	10.73973	1	
4	4 42	Röd	Nord	57.61832	10.75163	1	
e	6 <mark>62</mark>	Röd	Nord	57.44981	10.89790	1	
ç	9 85	Röd	Nord	57.53052	11.05677	1	
20	0 150	Röd	Nord	57.43902	11.51455	1	
23	3 167	Röd	Nord	57.02037	11.63879	reserv	
24	4 168	Röd	Nord	57.10347	11.64469	1	
26	5 172	Röd	Nord	57.43585	11.66864	reserv	
27	7 173	Röd	Nord	57.51894	11.67471	1	
37	7 68	Röd	Syd	56.11718	10.98072	reserv	
44	4 113	Röd	Syd	56.19518	11.28327	1	
47	7 134	Röd	Syd	56.10921	11.42712	1	
50	0 137	Röd	Syd	56.35858	11.44295	reserv	
53	3 <mark>156</mark>	Röd	Syd	56.10620	11.57587	1	
57	7 160	Röd	Syd	56.43865	11.59832	1	
66	5 203	Röd	Syd	56.34891	11.89200	1	
67	7 223	Röd	Syd	56.17917	12.02845	1	
68	3 <mark>22</mark> 4	Röd	Syd	56.26225	12.03502	1	
74	4 <mark>148</mark>	Gul		57.27281	11.50321	1	
75	5 <mark>169</mark>	Gul		57.18657	11.65063	1	
81	1 <mark>186</mark>	Gul		56.76780	11.77259	reserv	
82	2 <mark>187</mark>	Gul		56.85089	11.77873	1	
84	4 <mark>189</mark>	Gul		57.01707	11.79113	1	
85	5 <mark>190</mark>	Gul		57.10016	11.79737	1	
86	5 <mark>191</mark>	Gul		57.18324	11.80365	reserv	
89) 205	Gul		56.51509	11.90465	1	
90) <mark>206</mark>	Gul		56.59817	11.91103	1	
91	1 <mark>210</mark>	Gul		56.93050	11.93688	1	
94	4 <mark>213</mark>	Gul		57.17973	11.95664	1	
95	5 <mark>225</mark>	Gul		56.34533	12.04162	1	
101	1 207	Grön		56.68126	11.91744	1	
102	2 208	Grön		56.76434	11.92389	1	
103	3 209	Grön		56.84742	11.93037	1	
105	5 230	Grön		56.76070	12.07515	1	
106	5 231	Grön		56.84377	12.08196	1	
108	3 233	Grön		57.00990	12.09570	1	
109	248	Grön		56.42463	12.19816	1	
110	249	Grön		56.50769	12.20516	1	
111	1 250	Grön		56.59075	12.21219	reserv	
113	3 252	Grön		56.75687	12.22637	1	
114	4 253	Grön		56.83993	12.23352	1	
116	6 272	Grön		56.58677	12.36272	reserv	
120	294	Grön		56.58261	12.51320	1	
121	1 295	Grön		56.66564	12.52094	1	
125	5 246	Blå		56.25849	12.18428	1	
126	6 247	Blå		56.34156	12.19120	reserv	
127	7 267	Blå		56.17150	12.32630	1	
129	269	Blå		56.33762	12.34075	1	
131	1 289	Blå		56.16740	12.47516	1	

Hoved art

Togtet er målrettet mod dermasale arter i Kattegat og designet specielt mod torsk. Fangsten af alle arter skal dog registreres og afleveres også til bestandsvurdering af rødspætter og jomfruhummer.

Togt periode

Togtet skal foregå i slutningen af November / start December 2019. Der er planlagt 40 stationer samt udtrukket 6 ekstrastationer der kan benyttes hvis en given station ikke kan tages. Der må kun fiskes fra 15 min før solopgang til 15 min efter solnedgang. Deltager på dette års togt er :

29-11/10-12	12	Aage Thaarup	Skipper
		Søren Grønby	Styrmand
		Jens Holm	togtleder
		Brian Første halvdel Jan sidste	

Ski bog redskab

Skib :

Togtet bliver gennemført med 2 kommercielle svenske skibe og Havfisken. Tidligere blev også den danske del af togtet gennemført med kommercielle skibe.

DK-Vessel 1

Danish participant	Havfisken
Engine (KW):	
Tonnage (BRT):	48
Length (m):	17,5
Door type/size	
Owner	DTU Aqua

Trawler er et kommercielt bund trawl betalt af LOT 3 projectet.

Trawl (see annex): A Swedish TV-trawl 112 ft 24-464 13 pieces of 8" balls and 16 pieces of 6" balls. 4 thumps rubber discs at 10 cm Mesh size in cod end: 70 mm stretch mesh. Otter boards: 64"-66" "Thyborøn" Warp: 35 mm .

Mellem liner der benyttes må i 2017 varierer i længden mellem 54 og 154 meter. "Grimdelen" på 27 meter skal bi- beholdes hvilket gives en total længde på mellem 81 og 181 meter. Det er bare vigtigt at notere hvor lang en line der er benyttet.

Trawlet skal løbende tjekkes før og under togtet.

Under fiskeri

Må skipper selv bestemme hvordan fiskeriet skal foregå optimalt (dvs. Den eksakte position, retning wire længde mm). Max. 5 min a trawltiden bør ligge udenfor den planlagte kvadrat.

Træk tid: 60/30 min (træk tid ned til 25 min er accepteret).

Hastighed: Mellem 2.7 kn. Og 3.4 kn over bunden, man bør tilstræbe at holde en jævn fart under et træk.

Træk start: Når trawlet bliver vurderet til at gå stabilt som regel 5-7 min efter wirene er helt ude. Slut på træk: Når tiden er gået om man begynder at fire ind.

Trawlet distance: fås fra plotter.

Ca.50% af alle træk can blive gennemført med 30 min træk tid. Det er op til skipper at tage stilling til hvilke træk det er men man skal tilstræbe de bliver jævnt fordelt ud over togt området. Det er vigtigt at det fremgår tydeligt hvilke stationer der er gennemført med 30 min træk og hvilke der har 60 min.

Registrering af fiskeriet

Der skal udover besætning deltage 2 videnskabelige medarbejder fra DTU Aqua.

Fangsten oparbejdes tilsvarende som på BITS. Efter hvert træk skal all fangsten oparbejdes og sorteres på art samt vejes til nærmeste 0.1 kg. Alle fisk (undtagen tobis, sild og brislinger) skal måles i cm i total længde. Tobis, sild og brisling i scm. Jomfruhummer måles i mm og det er ikke nødvendigt at kønne dem.

For torsk skal der tages 1 otolith per cm per station

Til genetik er hovedfokus torsk under 25 cm hvor der skal tages 1 prøve per cm per station (same fisk som der tages otolither på). Hvis der fanges meget få torsk vil vi gerne have genetik også på de større torsk.

Der skal indsamles hajer og rokker til brug i worksshop om artsbestemmelse.

Kvalitetssikring af data

All data skal før indtastning undersøges for fejl, blandt andet ved længde – vægt plot, at fisk med genetik prøver får dette markeret I fiskeline, stationer ikke ligger på land mm.

Data

Data tastes i Fiskeline og kan overføres til DATRAS

Estimation of stock indices

CPUE kan beregnes som gennemsnitlig fangst i kg eller antal per alder og time.

Biomass og abundance

Da ingen stationer er dybere end 100 meter kan biomasse og abundance beregnes mellem 20 og 100 meter dybde. Togtet er stratificeret i 4 områder med forskelig tæthed af torsk og dækker et område på . 19037.6 km² (Table 1).

Stationerne er på forhånd udvalgt tilfældigt og swept area kan udregnes ved:

Swept area= (estimated trawling speed *1.852)* wing spread * trawling time/60

using the recorded towing speed, wing spread and trawling time and taking the catchability coefficient as 1.0 and the stratum area as weighting factor (Cohran, 1977).

Alle fangster kan standardiseres til fangst per km2

Reporting

The survey results are reported to WGBFAS as a working document. The document includes information about aerial distribution, CPUE, biomass, abundance and length frequencies on cod, sole, plaice and Norwegian lobster together with age distribution of cod.

References

Cochran, W.G. 1977. Sampling Techniques. Third edition. Wiley & Sons.

ICES. 2005. Report of the Workshop on Survey Design and Data Analysis (WKSAD). ICES CM 2005/ B:07, 174 pp.

Wieland, K. and Storr-Paulsen, M. 2006. Effect of tow duration on catch and size composition of Northern shrimp (*Pandalus borealis*) and Greenland halibut (*Reinhardtius hippoglossoides*) in the West Greenland Bottom trawl survey. Fisheries Research 78: 276-285.

Wieland, K., E.M. Fenger Pedersen, H.J. Olesen & J.E. Beyer (2008): Survey results from a Danish collaborative biologist-fishermen project on spatially-explicit management methods (REX) for North Sea cod. Working document, ICES WGNSSK, 7.-13. May 2008.

Fig. 1. Distribution of all hauls by type and squares.

Nr	Stationer Om	råde1 Område2			SE Cindv	SE Täman	DK Havfisken
1	39 Röd	Nord	57.36890	10.73973			
2	2 40 Röd	Nord	57.45204	10.74367			
4	41 Rod 42 Röd	Nord	57.61832	10.75163			
5	5 43 Röd	Nord	57.70146	10.75565			
6	62 Röd	Nord	57.44981	10.89790		1	
8	64 Röd	Nord	57.61608	10.90656			
9	9 85 Röd	Nord	57.53052	11.05677			
10	0 86 Röd	Nord	57.61365	11.06147			
11	107 Rod 108 Röd	Nord	57.52791	11.21130		1	
13	125 Röd	Nord	57.19266	11.34450		1	
14	126 Röd	Nord	57.27578	11.34978			
15	5 127 Röd	Nord	57.35889	11.35509		1	
17	120 Röd	Nord	57.52511	11.36580			
18	8 146 Röd	Nord	57.10660	11.49198			
19	9 149 Röd	Nord	57.35592	11.50886		1	
21	151 Röd	Nord	57.52212	11.52027			
22	2 166 Röd	Nord	56.93727	11.63291			
23	3 167 Rod	Nord	57.02037	11.63879			
25	5 171 Röd	Nord	57.35276	11.66261			
26	6 172 Röd	Nord	57.43585	11.66864			
27	7 173 Röd	Nord	57.51894	11.67471			
20	214 Rod 291 Röd	Nord	56.33349	12.49026			
30	292 Röd	Nord	56.41653	12.49787		1	
31	293 Röd	Nord	56.49957	12.50551			
32	2 313 Rod 315 Röd	Nord	56.32919	12.63972			
37	7 68 Röd	Syd	56.11718	10.98072			
38	69 Röd	Syd	56.20033	10.98501			
39	89 Röd	Syd	56.03156 56.11470	11.12497	1		
41	91 Röd	Syd	56.19785	11.13415			
42	2 92 Röd	Syd	56.28098	11.13878			
43	112 Röd	Syd	56.11205	11.27835	1		
44	5 11 <u>4 R</u> öd	Syd	56.27831	11.28823			
46	6 115 Röd	Syd	56.36144	11.29321			
47	134 Röd	Syd	56.10921	11.42712			
48	0 135 Rod 136 Röd	Syd	56.27546	11.43765			
50	137 Röd	Syd	56.35858	11.44295			
51	138 Röd	Syd	56.44170	11.44828			
52	2 139 Rod 156 Röd	Syd	56.52482	11.45364			
54	157 Röd	Syd	56.18931	11.58144			
55	5 158 Röd	Syd	56.27243	11.58704			
56	6 159 Röd	Syd	56.35554	11.59266	1		
58	3 161 Röd	Syd	56.52176	11.60401			
59	9 162 Röd	Syd	56.60486	11.60973	1		
60	178 Röd	Syd	56.10301	11.72459			
62	2 180 Röd	Svd	56.26921	11.73640			
63	3 181 Röd	Syd	56.35231	11.74235	1		
64	4 201 Röd	Syd	56.18273	11.87948	1		
66	202 Rod 203 Röd	Syd	56.26582	11.88572	1		
67	223 Röd	Syd	56.17917	12.02845			
68	3 224 Röd	Syd	56.26225	12.03502			
73	3 147 Gul		57.18971	11.49758		1	
75	169 Gul		57.18657	11.65063			
76	6 170 Gul		57.26966	11.65660			
77	7 182 Gul		56.43541	11.74833			
79	183 Gul		56.60161	11.76040			
80) 185 Gul		56.68470	11.76648			
81	186 Gul		56.76780	11.77259	1		
82	2 187 Gui 188 Gui		56.85089	11.77873		1	
84	189 Gul		57.01707	11.79113		1	-
85	5 190 Gul		57.10016	11.79737			
86	191 Gul		57.18324	11.80365		1	
88	3 204 Gul		56.43200	11.89831		'	
89	205 Gul		56.51509	11.90465			
90	206 Gul		56.59817	11.91103	1		
92	2 211 Gul		57.01358	11.94343			
93	212 Gul		57.09665	11.95002	1		
94	+ 213 Gul		57.17973	11.95664	1		
96	6 226 Gul		56.42840	12.04825			
97	227 Gul		56.51148	12.05492			
98	228 Gul	n	56.59455 56.68126	12.06163	1		
102	2 208 Grö	n	56.76434	11.92389			· · · ·
103	209 Grö	n	56.84742	11.93037		1	
104	229 Gröi	n n	56.67763	12.06837	-	1	
106	230 Groi	n	56.84377	12.08196			
107	232 Grö	n	56.92684	12.08881			
108	233 Gröi	n	57.00990 56.42462	12.09570	4	1	
110	248 Groi 249 Groi	n	56.50769	12.20516			
111	250 Gröi	n	56.59075	12.21219		1	
112	251 Gröi	n	56.67381	12.21926	1		
114	252 Gröi	n	56.83993	12.23352	1		
115	5 271 Grö	n	56.50372	12.35536	1		
116	272 Grö	0	56.58677	12.36272			
117	273 Groi 274 Groi	n	56.75287	12.37012	1	1	
119	275 Grö	n	56.83591	12.38504	1		
120	294 Gröi	n	56.58261	12.51320			
121	295 Gröi 246 Blå		56.25849	12.52094			
126	6 247 Blå		56.34156	12.19120			
127	267 Blå		56.17150	12.32630			
128	268 Blå 269 Blå		56.25456	12.33350	1	1	
130	200 Bla		56.42067	12.34803		1	
131	289 Blå		56.16740	12.47516			
132	2 290 Blå		56.25045	12.48269			

High density	Medium density	Low	Closed area	All
	-	density		
21 squares	26 squares	65 squares	8 squares	120 squares
1800.8 km ²	2229.5 km ²	5573.8 km ²	686 km^2	10290 km ²

 Table 1. Area (km²) 20-120 m depth by depth area.

Afstand mellem skovle:

150 fv = 274 m $0.18 \times 274 = 49 \text{ m}$

Calculations of door spread and wing spread

Assuming that the distance between the trawl doors and the wires form an equilateral triangle, the door spread have been calculated as

Wire length x measured distance b Door spread =

measured distance a

For every haul, a length on the wire (distance a) and the length between the wires measured at a_1 (distance b) have been recorded.

Wing spread is estimated as:

Ground gear length x Door spread

Wing spread =_____

Bridle length + Ground gear length

(Calculation from "Course in Trawl Gear Technology", May 2006, SeaFish Flume Tank, Hull, UK)

NOTE: Figure not according to scale