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4

5 SUMMARY6

We present local time series of the magnetic field gradient tensor elements at satellite7

altitude derived using a Geomagnetic Virtual Observatory (GVO) approach. Gradient el-8

ement time series are computed in four-monthly bins on an approximately equal-area dis-9

tributed worldwide network. This enables global investigations of spatial-temporal varia-10

tions in the gradient tensor elements. Series are derived from data collected by the Swarm11

and CHAMP satellite missions, using vector field measurements and their along-track and12

East-West differences, when available. We find evidence for a regional Secular Variation13

impulse (jerk) event in 2017 in the first time derivative of the gradient tensor elements.14

This event is located at low latitudes in the Pacific region. It has a similar profile and15

amplitude regardless of the adopted data selection criteria and is well fit by an internal16

potential field. Spherical harmonic models of the internal magnetic field built from the17

GVO gradient series show lower noise in near-zonal harmonics compared with models18

built using standard GVO vector field series. The GVO gradient element series are an19

effective means of compressing the spatio-temporal information gathered by low-Earth20

orbit satellites on geomagnetic field variations, which may prove useful for core flow21

inversions and in geodynamo data assimilation studies.22
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1 INTRODUCTION25

The main part of the geomagnetic field is generated in the Earth’s fluid outer core by a process known26

as the geodynamo. Knowledge of how this core field varies with space and time provides information27

on the fluid flow dynamics in the liquid metal outer core. Although the temporal behaviour of the geo-28

magnetic field is well characterized in time series from ground observatories, a global spatial-temporal29

study is hampered by the uneven distribution of these observatories. Even though low-Earth-orbit30

(LEO) satellites do provide good global coverage on timescales of weeks and longer, the direct study31

of the first time derivative of the core field, the secular variation (SV), from satellite measurements is32

not straightforward as LEO satellites are not geostationary, leading to ambiguity between spatial and33

temporal variations. Spherical harmonic (SH) field models derived from satellite measurements pro-34

vide an established way of studying the SV field and its time derivative, the secular acceleration (SA),35

globally. However, such harmonic functions have global support, which means that a SV prediction at36

a specific position may be affected by noise from remote locations.37

These issues lead Mandea & Olsen (2006) to introduce the concept of Geomagnetic Virtual Ob-38

servatories (GVOs) in space, in which satellite magnetic measurements from within a selected region,39

collected during one month time windows, were used to derive a local monthly mean vector field at the40

satellite mean altitude. The resulting GVO time series resemble monthly mean series computed using41

ground observatory magnetic measurements, by providing the magnetic vector field elements at fixed42

locations. However, since they are based on satellite data, regular sampling in both space and time is43

possible. The GVO method provides a means of compressing satellite data into a manageable dataset44

with global coverage, together with suitable error estimates. Olsen & Mandea (2007) used CHAMP45

measurements to derive GVO vector field time series, and carried out a global investigation of SV that46

identified a regional geomagnetic jerk event in 2003.47

In the original GVO approach of Mandea and Olsen, processing of the satellite measurements48

followed that of simple monthly field means at ground observatories, taking measurements from all49

local times and with all levels of geomagnetic activity, and relied on the assumption that short period50

external fields would have zero mean over the course of one month. However, later studies revealed51

that external fields, especially due to the magnetospheric ring current and ionospheric current systems,52

cause contamination of the retrieved internal GVO field signal (Olsen & Mandea 2007; Beggan et al.53

2009; Domingos et al. 2019). In addition, insufficient local time sampling from within one month54
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of polar orbiting satellites resulted in a bias due to the local time dependence of ionospheric and55

magnetosphere-ionosphere coupling currents (Shore 2013). Recently, the GVO processing algorithm56

has been further developed in an effort to reduce contamination from magnetospheric and ionospheric57

sources, and the local time sampling bias, with the aim of better isolating the field signal generated by58

the Earth’s outer core (Hammer et al. 2021a; Cox et al. 2020). These new GVO vector field series have59

been used to study global patterns of field changes (Hammer et al. 2021a,c), for inferring fluid flows60

close to the core surface (Kloss & Finlay 2019; Rogers et al. 2019) and for data assimilation studies61

(Barrois et al. 2018; Huder et al. 2020).62

In parallel to the development of these GVO-based techniques there has also been recent progress63

in the theory of space-based magnetic gradiometry, inspired by advances in satellite gravimetry. Initial64

studies have demonstrated that knowledge of the second-order 3× 3 magnetic gradient tensor may be65

beneficial when seeking to retrieve small scale features of the field (both the lithospheric field and the66

time-dependent core field). This is possible because gradient elements effectively give more weight67

to shorter wavelengths, while at the same time some noise sources (e.g. unmodeled magnetospheric68

fields) are predominantly of long wavelength, which can result in a higher signal-to-noise ratio for69

short wavelengths compared to using the vector field components (Kotsiaros & Olsen 2012, 2014).70

Assuming a potential field due to an internal source and no in-situ electrical currents, the field71

becomes a solenoidal irrotational vector field and the gradient tensor has the special property of being72

symmetric with a trace of zero. The assumption of a symmetric gradient tensor reduces the number73

of independent gradient tensor elements from nine to six, while a trace of zero further reduces this74

number to five. Each element of the magnetic gradient tensor may be considered as a directional75

filter providing specific information on the magnetic field structures. Thereby, certain gradient tensor76

elements better constrain specific spherical harmonics (Olsen & Kotsiaros 2011). According to the77

studies of Kotsiaros & Olsen (2012) and Kotsiaros & Olsen (2014), knowledge of the radial gradient78

of the radial field, written as [∇B]rr, is particularly suitable for resolving the higher degree parts and79

zonal harmonics. The East-West gradient of the azimuthal field, [∇B]φφ, and radial field, [∇B]rφ, are80

especially sensitive towards sectorial harmonics, while the North-South gradient of the radial, [∇B]rθ,81

and meridional, [∇B]θθ, fields are especially useful for determining near-zonal harmonics. The East-82

West gradient of the meridional field, [∇B]θφ does not provide significant additional information. In83

addition, knowledge of how certain external fields may influence certain gradient tensor elements is84

important to consider, for instance the magnetospheric ring current is expected to affect zonal terms85

constrained by the [∇B]rr element but not the [∇B]rφ element (Kotsiaros & Olsen 2014). Although86

it is not yet possible to directly measure the full magnetic gradient tensor in space (Nogueira et al.87
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2015), it is nonetheless possible to compute the tensor elements from a magnetic potential determined88

using satellite magnetic measurements.89

In this paper, we estimate local time series of the magnetic field gradient tensor elements using the90

GVO method. We follow Hammer et al. (2021a) in implementing dark and quiet time data selection91

criteria and use 4-month time windows to minimize problems related to local time sampling (Hammer92

et al. 2021a). In Section 2 we provide a detailed description of the satellite magnetic measurements93

and selection criteria used, and in Section 3 we describe the GVO method and computation of GVO94

gradient element time series. In Section 4.1 we present results of the GVO series for each of the SV95

gradient elements, and visually inspect these. In order to investigate the possible benefits of using96

GVO gradient data, we compare SH field models derived epoch by epoch from the GVO vector data97

and GVO gradient tensor data in Section 4.2. We study the detailed behaviour of the gradient ten-98

sor elements going from 2015 to 2018 with focus on the Pacific region. Finally, Section 5 provides99

discussions and conclusions.100

2 DATA101

To derive the GVO time series we select vector magnetic field measurements from the CHAMP and102

Swarm satellite missions. We used CHAMP L3 magnetic data between July 2000 and September 2010103

and Swarm Level 1b MAG-L, version 0505/0506, from all three Swarm satellites Alpha, Bravo and104

Charlie between January 2014 and April 2020, and sub-sample at 15s intervals in the vector field105

magnetometer (VFM) frame. Next, the magnetic data in the VFM frame are rotated into an Earth-106

Centered Earth-Fixed (ECEF) local Cartesian North-East-Centre (NEC) coordinate frame (for details107

see Olsen et al. (2006)) by using the Euler rotation angles from the CHAOS-7.2 model (Finlay et al.108

2020). Measurements from known problematic days (e.g. where satellite manoeuvres took place) were109

removed and gross data outliers for which the vector field components deviated more than 500nT from110

CHAOS-7.2 field model (Finlay et al. 2020) predictions were rejected. The measurements were then111

selected using a dark quiet time criteria defined here as: a) the sun is at least 10◦ below horizon, b)112

geomagnetic activity index Kp < 3◦, c) ring current index |dRC/dt| < 3nThr−1 (Olsen et al. 2014),113

merging electric field at magnetopause Em ≤ 0.8mVm−1 (Olsen et al. 2014), and placing constraints114

on the interplanetary magnetic field (IMF) requiring Bz > 0nT and |By| < 10nT (Ritter et al. 2004).115

Here we computed two-hourly means of 1 min values of the solar wind and IMF computed form the116

OMNI database, http://omniweb.gsfc.nasa.gov.117

Previous studies have demonstrated the benefits of using along-track differences of the satellite118

magnetic field measurements for retrieving higher spatial resolution of the core and also the litho-119

spheric fields, as such differences filters out correlated noise caused by external sources (Olsen et al.120

http://omniweb.gsfc.nasa.gov
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2015; Kotsiaros et al. 2015; Kotsiaros 2016; Finlay 2019). To facilitate sufficient constraints on the121

longer wavelengths of the field, we supplement by include data means (Sabaka et al. 2013; Ham-122

mer 2018). Therefore, from the satellite magnetic field measurements, Bk(r), where k is the unit123

vector of a given coordinate system, we use measurement means, Σdk, and differences, ∆dk as124

data. The differences, ∆dk = (∆dATk ,∆dEWk ), and the means, Σdk = (ΣdATk ,ΣdEWk ), are taken125

along-track (AT) for each satellite and East-West (EW) between the Swarm Alpha (SWA) and Char-126

lie (SWC) satellites. Here along-track differences are calculated from the 15 s differences ∆dATk =127

[Bk(r, t)−Bk(r+δr, t+15s)] while the means are given by ΣdATk = [Bk(r, t)+Bk(r+δr, t+15s)]/2.128

The East-West differences were calculated as ∆dEWk = [BSWA
k (r1, t1)−BSWC

k (r2, t2)], and the means129

as ΣdEWk = [BSWA
k (r1, t1) + BSWC

k (r2, t2)]/2. Considering a given orbit of Swarm Alpha, the cor-130

responding Swarm Charlie measurement were chosen to be that closest in colatitude provided that131

|∆t| = |t1 − t2| < 50s (Olsen et al. 2015).132

3 THEORY AND METHOD133

3.1 Geomagnetic Virtual Observatory Method134

The Geomagnetic Virtual Observatory method allows for epoch estimates of the magnetic vector field135

components at a given target point (referred to as a GVO target location) to be derived using satellite136

measurements from within a region closer than 700 km during the course of four months. A radius137

of 700 km enables enough data for computing reliable and independent GVO estimates every four138

months (Hammer 2018). From these measurements, provided in an ECEF coordinate frame given139

by the spherical polar components, Bobs = (Br, Bθ, Bφ), magnetic field residuals are calculated as140

Hammer et al. (2021a)141

δB = Bobs −BMF −Blit −Bmag −Biono, (1)142

where model fields subtracted are: the main field (MF), BMF , for SH degrees n ∈ [1, 13] determined143

using the CHAOS-7 model (Finlay et al. 2020), the static lithospheric field, Blit, for SH degrees144

n ∈ [14, 185] determined using the LCS-1 model (Olsen et al. 2017), the large-scale magnetospheric145

and associated Earth induced fields, Bmag, as given by the CHAOS-7 model parameterized in time by146

the RC index (Finlay et al. 2020), and the ionospheric and associated Earth induced fields, Biono, as147

determined using the CIY4 model parameterized by 90-day averages of solar flux F10.7 (Sabaka et al.148

2018). Note here that we remove predictions of the main field in order to facilitate a robust estimation.149

At a later stage, main field predictions at the GVO target position and epoch are added back (Mandea150
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& Olsen 2006; Hammer et al. 2021a), however, the precise choice of main field used in both steps is151

not crucial (Hammer 2018; Hammer et al. 2021c).152

Next, the residual magnetic field vector, eq.(1), and its positions are transformed from the spheri-153

cal system to a right-handed local topocentric Cartesian system (x, y, z) having its origin at the GVO154

target location, as detailed in (Hammer 2018, p. 64). At this specific GVO location (and only at this lo-155

cation), x points towards geographic south, y points towards east and z points radially upwards (Ham-156

mer et al. 2021a). At the GVO target point, the unit vectors of the local Cartesian frame, (êx, êy, êz),157

also coincides with the spherical polar unit vectors (êr, êθ, êφ). Assuming that the magnetic field mea-158

surements are made in a source free region, the residual field, δB, is a Laplacian potential field which159

fulfils the quasi-stationary approximation (Sabaka et al. 2010). This means that a magnetic scalar po-160

tential, V , is associated with the residual field, which in the local Cartesian coordinate system can be161

expanded as a sum of polynomials having the formCabcx
aybzc (Backus et al. 1996). In this application162

we expand to cubic terms following Hammer et al. (2021a)163

V (x, y, z) = C100x+ C010y + C001z + C200x
2 + C020y

2
164

− (C200 + C020)z
2 + C110xy + C101xz + C011yz165

− 1

3
(C102 + C120)x

3 − 1

3
(C210 + C012)y

3
166

− 1

3
(C201 + C021)z

3 + C210x
2y + C201x

2z167

+ C120y
2x+ C021y

2z + C102z
2x+ C012z

2y + C111xyz. (2)168
169

The means and differences of the residual magnetic field are linked to this potential via appropriate170

design matrices constructed as described in Hammer et al. (2021a). The coefficients of the potential171

are determined from a robust least-squares solution, which includes a) an a prior data covariance172

matrix derived from standard deviations of the residuals between the data (means and differences) and173

predictions of an un-weighted least-squares solution, b) a diagonal weight matrix consisting of robust174

(Huber) weights, using a scale constant of 1.5 (e.g., Constable 1988), and c) an additional down-175

weighting factor of 1/2 when data comes from Swarm satellites Alpha and Charlie, taking into account176

that these fly side-by-side and thus provide similar measurements. From these potential coefficients,177

a mean residual magnetic field for the given GVO target point position and epoch is computed as178

δBGV O(x, y, z) = −∇V = −(C100, C010, C001). This mean residual field is then rotated back into179

the vector components in spherical polar coordinates, δBGV O,r = δBGV O,z , δBGV O,θ = δBGV O,x,180

δBGV O,φ = δBGV O,y and afterwards a main field prediction evaluated at the GVO epoch using SH181

degrees n ∈ [1, 13] is added back to obtain the GVO field (Hammer et al. 2021a).182

Following the same procedure as in Hammer et al. (2021a), we compute a global grid of 300183
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Figure 1. Number of stable GVOs for each epoch, given the applied dark and quiet-time selection criteria,

during CHAMP (blue) and Swarm (green) times.

GVO’s located on an approximately equal area grid based on the sphere partitioning algorithm of184

Leopardi (2006). The distance between the GVOs in this grid is≈ 1400 km, and with a target cylinder185

radius of 700 km close to 80% of the measurements are used. The GVO height above ground is taken to186

be 370 km and 490 km (approximate mean orbital altitude) during CHAMP and Swarm times, respec-187

tively. The global grid has GVOs located at the North and South poles, where we define the (r, θ, φ)188

frame such that r points radially outwards, θ is aligned along the Greenwich meridian and φ completes189

the right-handed system. In order to add back a main field prediction at these two positions, we com-190

pute an average value of model field predictions computed 0.1◦ in latitude from the North/South Pole191

at longitudes 0◦ and 180◦. Figure 1 presents the available number of GVOs for each epoch (the max-192

imum possible number at each epoch is 300). Table 1 presents the mean and root-mean-square (rms)193

of residuals between the satellite measurements used for each GVO and the GVO model predictions,194

and summed up for each component split into regions of 78 polar and 222 non-polar GVO’s, defining195

polar to be GVOs poleward of ±54◦ geographic latitude. The polar rms values for both data sums and196

differences are higher than the non-polar, and the CHAMP values are higher than the Swarm values.197

The non-polar rms values for all components are below 2nT during both CHAMP and Swarm times.198

3.2 Computing the Magnetic Field Gradient Tensor within the GVO framework199

In this section we now proceed to formulate the magnetic field gradient tensor and describe how this200

transforms from a spherical polar coordinate system to the local topocentric Cartesian right-handed201

coordinate system used in the GVO method. This transformation will allow us to compute GVO time202

series for the magnetic field gradient tensor elements in analogy to the concept of GVO vector field203

time series.204
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CHAMP Swarm CHAMP Swarm

Component No. Mean rms No. Mean rms Component No. Mean rms No. Mean rms

[nT] [nT] [nT] [nT] [nT] [nT] [nT] [nT]

Polar 2574 1638 Non-polar 7326 4662∑
Bx,NS -0.30 6.61 -0.52 6.26

∑
Bx,NS -0.80 1.75 0.01 1.69∑

By,NS 0.00 6.52 -0.02 6.79
∑
By,NS 0.00 1.46 0.00 1.74∑

Bz,NS 0.00 3.33 0.01 3.02
∑
Bz,NS 0.00 1.30 -0.00 0.95∑

Bx,EW 0.05 5.92
∑
Bx,EW -0.03 1.57∑

By,EW -0.01 6.44
∑
By,EW 0.01 1.48∑

Bz,EW 0.01 2.89
∑
Bz,EW -0.01 0.88

∆Bx,NS -0.01 4.35 0.01 3.80 ∆Bx,NS -0.01 0.50 0.00 0.26

∆By,NS -0.01 5.20 -0.01 4.86 ∆By,NS 0.00 0.58 0.00 0.38

∆Bz,NS 0.01 1.61 -0.00 1.36 ∆Bz,NS 0.00 0.53 0.00 0.27

∆Bx,EW 0.10 3.17 ∆Bx,EW 0.10 0.51

∆By,EW 0.00 3.17 ∆By,EW 0.02 0.70

∆Bz,EW -0.07 0.95 ∆Bz,EW -0.02 0.50

Table 1. GVO model rms misfit statistics between contributing satellite data and GVO estimates using a global

grid of 300 GVO’s during CHAMP and Swarm. Here ∑ and ∆ represent data means and data differences,

respectively.

We begin by expressing the magnetic field gradient tensor in the local Cartesian system of the205

GVO method described in Section 3.1. This is given by (see Appendix A for full details)206

∇B = −


∂2V
∂z2

∂2V
∂x∂z

∂2V
∂y∂z

∂2V
∂z∂x

∂2V
∂x2

∂2V
∂y∂x

∂2V
∂z∂y

∂2V
∂x∂y

∂2V
∂y2

 =


[∇B]zz [∇B]zx [∇B]zy

[∇B]xz [∇B]xx [∇B]xy

[∇B]yz [∇B]yx [∇B]yy

 . (3)207

208

This is a second-order tensor where the minus sign comes from defining the magnetic field as the209

negative gradient of the potential. The gradient tensor elements are denoted here by [∇B]jk, where210

the first subscript, j denotes the vector component under consideration and the second subscript, k,211

denotes direction of the field derivative. Using the local cubic potential eq.(2) estimated from the212

residual magnetic field as described in Section 3.1, a second-order residual field gradient tensor at the213

GVO target point can be derived using eq.(3) as214

∇δBGV O =


2(C200 + C020) −2C101 −2C011

−2C101 −2C200 −2C110

−2C011 −2C110 −2C020

 . (4)215

216
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Because the magnetic field is a solenoidal vector field, the divergence is zero, such that the trace of217

the gradient tensor vanishes, i.e. tr(∇δBGV O) = 2(C200 + C020) − 2C200 − 2C020 = 0, reducing218

the number of independent elements from 9 to 8. In addition to this, because the field is a Laplacian219

potential field, the curl of the field vanishes and the number of independent tensor elements reduces to220

5; in other words, the magnetic gradient tensor is symmetric with trace zero (Kotsiaros & Olsen 2012).221

222

Following the GVO algorithm, gradient tensor estimates from a field model then have to be added223

back at the GVO target point for harmonic degrees n ≤ 13. To do this, we will need to consider how224

the gradient tensor elements in spherical polar and Cartesian coordinate systems are related. The mag-225

netic gradient tensor elements as expressed in the spherical coordinate system are given by (Olsen &226

Kotsiaros 2011; Kotsiaros & Olsen 2012), see also Appendix A227

∇B =


−∂2V
∂r2

−1
r
∂2∂V
∂θ∂r + 1

r2
∂V
∂θ − 1

rsinθ
∂2V
∂φ∂r + 1

r2sinθ
∂V
∂φ

− ∂2V
∂r∂θ + 1

r2
∂V
∂θ − 1

r2
∂2V
∂θ2
− 1

r
∂V
∂r − 1

r2sinθ
∂2V
∂φ∂θ + cosθ

r2sin2θ
∂V
∂φ

− 1
rsinθ

∂2V
∂r∂φ + 1

r2sinθ
∂V
∂φ − 1

r2sinθ
∂2V
∂θ∂φ + cosθ

r2sin2θ
∂V
∂φ − 1

r2sin2θ
∂2V
∂φ2
− 1

r
∂V
∂r −

cosθ
r2sin2θ

∂V
∂θ

228

=


[∇B]rr [∇B]rθ [∇B]rφ

[∇B]θr [∇B]θθ [∇B]θφ

[∇B]φr [∇B]φθ [∇B]φφ

 . (5)229

230

Here the first column of the tensor contains the derivatives of the magnetic field components along231

the radial direction, the second column contains the derivatives along the co-latitudinal direction and232

the third column contains the derivatives along the longitudinal direction. The gradient element in the233

first column and row contains one term only, the field derivative term e.g. ∂2/∂r2, while the rest of the234

gradient tensor elements in addition to this also have an additional field term i.e. ∂/∂r, ∂/∂θ or ∂/∂φ.235

Appendix B provides example plots of the SV gradient tensor elements at the Earth’s surface in 2018,236

decomposed into the field derivative term, the field term parts and both terms together as computed237

using the CHAOS-7 field model (Finlay et al. 2020). The transformations relating the gradient tensor238

elements in the local Cartesian system to the tensor elements of the spherical system, only at the GVO239

target location, are in the end given by the following simple relations (see Appendix A for a full240

derivation).241

[∇B]zz = [∇B]rr [∇B]zx = [∇B]rθ [∇B]zy = [∇B]rφ (6)242

[∇B]xz = [∇B]θr [∇B]xx = [∇B]θθ [∇B]xy = [∇B]θφ243

[∇B]yz = [∇B]φr [∇B]yx = [∇B]φθ [∇B]yy = [∇B]φφ .244
245

Having determined the potential from the residual magnetic field eq.(1), we can compute a residual246
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Component rms[rr] rms[θθ] rms[φφ] rms[rθ] rms[rφ] rms[θφ]

[pT/km yr−1] [pT/km yr−1] [pT/km yr−1] [pT/km yr−1] [pT/km yr−1] [pT/km yr−1]

CHAMP

Polar 5.40 3.90 4.20 4.20 5.20 5.20

non-Polar 2.10 0.70 2.00 1.40 3.20 1.30

All 2.98 1.54 2.55 2.14 3.73 2.33

Swarm

Polar 4.20 3.20 3.80 3.20 3.40 4.30

non-Polar 1.20 0.30 1.20 0.50 1.50 1.10

All 1.98 1.01 1.86 1.23 1.97 1.97

Table 2. Mean of the rms differences (in pT/km yr−1) between GVO SV series and GCV cubic spline fits for

six of the gradient tensor elements. Results are shown for GVO SV gradient series derived from Swarm and

CHAMP data using CHAOS-7.2 (Finlay et al. 2020) as MF model in the GVO processing.

field gradient tensor by eq.(4) and add back main field gradient tensor estimates from the CHAOS-247

7.2 field model using eq.(5) for SH degrees n ≤ 13, using the above relations, in order to obtain the248

required GVO field gradient estimates∇BGV O. Note that this procedure is analogous to the procedure249

applied in deriving vector field GVOs where the main vector field is added back. The above procedure250

is then repeated at each GVO location and for each epoch to compute all the desired GVO field gradient251

time series.252

Error estimates for each tensor element jk, and separately for CHAMP and Swarm, are com-253

puted using the residuals ejk = dGV O − dCHAOS , between the GVO gradient tensor data, dGV O =254

[∇BGV O]jk, and the gradient element predictions of the CHAOS-7 for SH degree n = 1 − 16,255

dCHAOS = [∇B]jk. Considering all epochs for each GVO in the grid, the error estimates for ten-256

sor element jk are given by the total mean square error σjk =
√∑

i(ejk,i − µjk)2/M + µ2jk (e.g.257

Bendat & Piersol 2010), where ejk,i is the residual of the ith data element, M is the number of data in258

a given series and µjk is the residual mean for a given component. Hammer et al. (2021a) computed259

similar uncertainty estimates for the vector components using the vector field residuals towards the260

CHAOS-7 model.261

As with the ordinary GVO vector field time series, we estimate GVO gradient tensor time se-262

ries in a global grid of 300 GVOs. We compute the SV as annual differences at each GVO for each263

tensor element. In order to quantify the scatter levels in each series, we then fit cubic smoothing264

splines to the time series, with a knot spacing of 4 months and a smoothing parameter determined265

using a generalized cross-validation (GCV) approach (Green & Silverman 1993). Table 2 presents266
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Component rms[rr] rms[θθ] rms[φφ] rms[rθ] rms[rφ] rms[θφ]

[pT/km yr−1] [pT/km yr−1] [pT/km yr−1] [pT/km yr−1] [pT/km yr−1] [pT/km yr−1]

CHAMP

Polar 5.40 3.90 4.20 4.20 5.20 5.20

non-Polar 2.10 0.70 2.00 1.40 3.20 1.30

All 2.98 1.55 2.55 2.14 3.72 2.33

Swarm

Polar 4.20 3.20 3.80 3.20 3.40 4.30

non-Polar 1.20 0.30 1.20 0.50 1.40 1.20

All 1.97 1.02 1.86 1.22 1.97 1.97

Table 3. Mean of the rms differences (in pT/km yr−1) between GVO SV series and GCV cubic spline fits

for six of the gradient tensor elements. Results are shown for GVO SV gradient data derived from Swarm and

CHAMP data using COV-OBS.x2 model (Huder et al. 2020) as MF model in the GVO processing.

the mean rms differences between the GVO SV gradient tensor elements and GCV spline fits, sep-267

arated into polar and non-polar regions. These rms numbers provide an indication of the scatter268

level in the GVO SV gradient data derived from the CHAMP and Swarm measurements first us-269

ing CHAOS-7 (Finlay et al. 2020) as a main field model. Comparing the numbers between CHAMP270

and Swarm, we see that overall the values are lower for Swarm, i.e. Swarm gradient tensor element271

SV time series have a lower scatter than similar series for CHAMP. In particular, we note that the272

d [∇B]θθ /dt and d [∇B]rθ /dt elements show considerably lower misfit values having non-polar val-273

ues of 0.3 pT/km yr−1 and 0.5 pT/km yr−1, respectively, during Swarm and 0.7 pT/km yr−1 and274

1.4 pT/km yr−1 during CHAMP times, respectively.275

We also tested how the choice of main field model (used for subtracting and adding back main276

field estimates) would impact the results. We produced test GVO tensor element series from both277

CHAMP and Swarm measurements using the main field predictions for SH degrees n ∈ [1, 13] of278

the COV-OBS.x2 model (Huder et al. 2020). Table 3 presents the mean rms differences using the279

COV-OBS.x2 model instead of CHAOS-7. This results in almost identical misfit levels to the GCV280

splines (i.e. scatter), between the GVO gradient series during CHAMP and Swarm times, regardless281

of whether CHAOS-7.2 or COV-OBS.x2 is chosen.282
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4 RESULTS283

4.1 Field Gradient Element SV time series284

We begin by investigating the temporal behaviour of the annual differences of each gradient tensor285

element at an example GVO location above Honolulu ground observatory in Hawaii, from which there286

are well known vector field records. To do this, we compute dedicated GVO gradient element series287

above the Honolulu observatory using the method described in Section 3.2. Here we are motivated by288

studies which have point out a change in secular acceleration of the radial component in the Pacific289

occurring around 2017 (Sabaka et al. 2018; Finlay et al. 2020). In particular, we are interested to see290

if it is possible to identify this event in the GVO gradient tensor time series, and how this will display291

in the various tensor elements. Figure 2 present plots of the SV for each gradient tensor element above292

Honolulu, showing the GVOs derived from CHAMP (in blue) and Swarm (in red) measurements.293

For comparison purposes we have mapped the two GVO series to a common altitude of 500 km by294

subtracting off the SV gradient field differences between the GVO altitudes and 500 km altitude using295

the CHAOS-7.2 model.296

We begin by noting that the SV gradient tensor in Figure 2 is symmetric, as expected. Visual297

inspection clearly demonstrates that geophysical signals are captured in all of the SV gradient ten-298

sor elements. Distinctive changes centred around 2017 can be observed having a ”V ” shape in the299

d [∇B]rr /dt and d [∇B]rθ /dt elements, with a corresponding ”Λ” shape in the d [∇B]θθ /dt and300

d [∇B]φφ /dt elements. In addition to this, we note that during 2004-2010, especially the d [∇B]rθ /dt301

element displays a variation pattern which resembles that found in the θ-component of the annual dif-302

ferences of monthly mean vector field series from Honolulu (not shown).303

Next, we investigate the global behaviour of annual differences of the gradient elements for GVOs304

derived from Swarm measurements during 2014-2020. Here we have chosen to present global series305

for the d [∇B]rr /dt element in Figure 3. By visual inspection, we find local regions with similar tem-306

poral changes as those observed at the Honolulu SV gradient series. In particular, a distinct ”V ” shaped307

behaviour is found in the eastern Pacific region in a band stretching from latitudes 20◦S to 20◦N and308

longitudes 180◦ to 220◦ with a possibly related opposite ”Λ” shaped behaviour in the western Pacific309

region from latitudes 20◦S to 20◦N and longitudes 120◦E to 180◦E. These regional changes occur310

over a time window of 6 years reaching amplitudes of about 15 pT/km yr−1. Note that a ”V ”-shaped311

SV gradient time series means a strong positive change in the SA, while a ”Λ”-shaped time series312

means a strong negative change in the SA. Though more complex to interpret, the other SV gradient313

tensor elements (not shown) also exhibit distinctive behaviour in the Pacific region. These observed314

changes in the SV gradient elements indicate regional jerk-type event happening in the Pacific centred315
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Secular variation -eld gradients elements at Honolulu (21:3/N,202/E)

Figure 2. Annual differences of the GVO field gradient elements with±1σ uncertainties, during CHAMP (blue)

and Swarm (red) times at altitude 500km for a case study above Honolulu, Hawaii. Units are pT/km yr−1.

on 2017. In the ionosphere external fields tend to be organized according to the geometry of Earth’s316

main field, and their signal in the GVO series may therefore be grouped accordingly to magnetic lat-317

itude in quasi-dipole coordinates (Laundal & Richmond 2017). Here magnetic latitude ±70◦ (dark318

blue curve) may be used to approximate the border between North/South Polar and Auroral zones,319

while magnetic latitude ±50◦ (light blue curve) divides the North/South Auroral and Low- to Mid-320

latitude zones (Hammer et al. 2021a). In all of the SV gradient element maps, higher scatter are found321

at GVOs located in the Polar and Auroral zones, which is consistent with noise (unmodeled fields)322

from ionospheric and magnetosphere-ionosphere coupling currents.323

Besides the aforementioned variations, rapid small amplitude SV fluctuations within a few years324

can be seen especially clear in the d [∇B]rr /dt element. Are such rapid changes of external origin? In325

particular, two types of variations in the SV gradient series could be indicative of external field leak-326

age: 1) a temporal feature seen in polar latitude GVO time series persisting in series at lower latitudes327

along the same meridional line, could be an indicator of a contaminating signal of ionospheric or field-328

aligned current origin, due to the incomplete sampling of local times in the contributing satellite data329

2) temporal features seen at mid or low latitudes in the GVO series at all longitudes could be a sign330

of a signal having magnetospheric origin. In the global time series no distinct similar temporal feature331
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Figure 3. Time series of SV field gradient element d [∇B]rr /dt (map) during Swarm time from 2014-2020 at

490km altitude. Magnetic latitudes ±50◦ and ±70◦ shown with blue curves. GVO locations marked with a red

cross. Highlighted are selected time series (locations marked with green ellipse) after removing the mean trend

in order to ease comparison, at three GVO locations along the 150◦W meridian line at latitudes 30◦S (top), 42◦S

(center) and 54◦S (bottom).

can be observed along all longitudes at mid/low latitudes, thus suggesting that magnetospheric distur-332

bances are small. However, some contamination from ionospheric currents at higher latitudes persists333

to lower latitudes. Considering for instance d [∇B]rr /dt series along longitude 150◦W, stretching334

from latitudes 30◦S to 60◦S, some rapid variations can be seen that decrease in amplitude going to-335

wards equatorial latitudes, as highlighted in the side-panels of Figure 3 at three selected GVO locations336

(marked in the global maps by the green ellipse).337

An important question is whether the prominent change in SV observed centred on 2017 is robust338

and of internal origin. To address this, we produced a set of the GVO SV series above Honolulu, during339

Swarm time, testing a range of geomagnetic selection criteria. We considered five cases: Case A using340

a dark quiet time data selection removing estimates of the magnetospheric and ionospheric fields as341

described in Section 2, this is our ’preferred’ criteria for studying core field variations, Case B using a342

dark quiet time data selection removing estimates of the magnetospheric field but not removing esti-343

mates of the ionospheric field, Case C using a dark time data selection but with neither ionospheric nor344

magnetospheric corrections, Case D using a quiet time data selection from both day and night (”all”345

local times) and estimates of the magnetospheric field were removed and Case E using data from ”all”346

local times, without any quiet time data selection applied and without corrections for magnetospheric347

or ionospheric fields. Here ”dark” means the sun is required to be at least 10◦ below horizon, and ”all”348
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Secular variation -eld gradient elements at Honolulu (21:3/N,202/E)

Figure 4. Annual differences of the field gradient elements from GVO’s derived using different data selection

criteria, as described in the text, during Swarm time for a case study at Honolulu, Hawaii. Units are pT/km yr−1.

means that no such requirement is used, i.e. sunlit data are also included. SV gradient series for all five349

data selection cases are shown in Figure 4. The black dots corresponding to Case A are for our ”pre-350

ferred” criteria were also used to derive the maps in Figure 3. All the selection criteria results in the351

same overall temporal ”Λ/V ” shape behaviour with an amplitude of ≈ 15 pT/km yr−1. There is no352

increase in amplitude on including more disturbed data. For example, comparing Case C (purple star)353

with Case A/Case B (black/blue dots) should expose a signal from a magnetospheric source; however,354

the same ”Λ/V ” shape behaviour appears in all three cases. Comparing instead Case E (yellow star)355

with Case C and Case D should expose an ionospheric signal, which is expected to be larger during356

sunlit conditions; even though more scatter is seen in Case E, the same overall ”Λ/V ” shape is clearly357

visible and with similar amplitude. These results are consistent with an internal origin for the 2017 SV358

impulse event.359

4.2 Example Spherical Harmonic Models Derived From Gradient Data360

In this section we demonstrate that spherical harmonic (SH) field models with high temporal resolution361

(4 months) can be built from the global network of GVO gradient tensor time series. We then use362

these models to investigate global change in SA during Swarm time, and in particular, we analyse the363
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possible benefits of the GVO field gradient tensor series over more standard GVO vector field series.364

The linear forward problem of determining the SH expansion coefficients can be written365

d = Gm, (7)366

where d is a data vector containing the GVO epoch data (i.e. field vector components or field gradient367

tensor elements), G is the design matrix for an internal potential relating each model coefficient to368

the data, and vector m contains the parameters of the potential, i.e. the internal SH coefficients here369

denoted as gmn and hmn for order m and degree n. For each GVO epoch we estimate a SH model using370

a robust least-squares solution371

m = (GTW G)−1GT Wd, (8)372

where W = w/σ2 is a diagonal weighting matrix consisting of Huber weights, w, having a Huber373

tuning of 1.5 (e.g., Constable 1988) and error estimates, σ2, of either the field vector components or374

field gradient tensor elements (see Section 3.2). We derive models up to SH degree 14 for each 4375

month interval. No spatial or temporal regularization is applied.376

To investigate the 2017 region jerk event we next compute the secular acceleration change for377

each gradient tensor element between 2015.5 and 2018.5 at the Earth’s surface378

∆d2 [∇B]jk /dt
2 = d2 [∇B]jk /dt

2|2018.5 − d2 [∇B]jk /dt
2|2015.5. (9)379

Plotting global maps of this change in Figure 5 for each of the gradient elements for degrees n ≤ 9380

at the Earth’s surface, distinct patterns of SA change are seen to have occurred in the Pacific region381

during 2015.5-2018.5. Only results for the upper right part of the gradient elements are shown as the382

tensor is symmetric. The ∆d2 [∇B]rr /dt
2 map identifies two strong localized patches of opposite383

sign in SA change reaching amplitudes of 40 pT/km yr−2 in a region defined by latitudes 25◦S to384

25◦N and longitudes 140◦ to 220◦. Associated strong negative and positive patches are seen in the385

∆d2 [∇B]φφ /dt
2 map in the same region. In addition, the ∆d2 [∇B]rθ /dt

2 and ∆d2 [∇B]θφ /dt
2

386

elements show a tiling pattern of positive and negative field patches from latitudes 25◦S to 25◦N and387

longitudes 120◦ to 240◦. Similar changes, but in the radial field SA between 2014 to 2020, involving388

nearby features with opposite sign in the Pacific region, have been found in the CHAOS-7 field model389

(Finlay et al. 2020) and using the technique of Subtractive Optimized Local Averages (SOLA) applied390

to Swarm data (Hammer & Finlay 2019; Hammer et al. 2021c).391

Next, we seek to further inspect and compare the SH models obtained from GVO the field gradient392

series with similar models obtained using more traditional GVO vector field series. Figure 6 presents393

the mean of the MF (dotted curves), SV (solid curves) and SA (punctuated curves) power spectra394

at the CMB obtained from the epoch-by-epoch SH models derived without applying any spatial or395
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Figure 5. Change in SA gradient tensor elements between 2015.5 and 2018.5 for SH degrees n ≤ 9 at the

Earth’s surface.
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Figure 6. MF (dotted curves), SV (curves) and SA (punctuated curves) CMB mean power spectra of epoch

models derived using Swarm GVO vector field (blue) and field gradient (red) data truncated at SH degree

n = 14.
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temporal regularization. Spectral curves in blue and red are derived from GVO gradients and GVO396

vector series, respectively. The SV and SA power spectra derived from GVO gradient tensor series are397

seen to diverge less rapidly as compared to models derived from GVO vector series, and the SV/SA398

intersection happens at a slightly higher degree (10 compared to 9). This behaviour is consistent with399

the analyzes of Kotsiaros & Olsen (2014), who found that gradient observations better constrain SV to400

higher SH degrees than vector observations. We find (not shown) that we can robustly map the SA at401

the CMB up to degree 7 using the 4-monthly gradient tensor element data. Although the CMB maps402

exhibit more noise due to the downward continuation of the field, they display the same distinct SA403

changes in the Pacific region as those appearing in Figure 5, thus supporting an internal origin of the404

2017 SA impulse.405

Investigating further these SH models, Figure 7 shows the first time derivative of the internal ex-406

pansion coefficients, computed based on simple first differences, derived from the GVO vector (blue)407

and GVO gradient (red) series. Example coefficients are shown for zonal, m = 0, terms (top row),408

tesseral, m 6= n, terms (middle row) and sectorial, m = n, terms (bottom row). To quantify the scat-409

ter level in the epoch coefficient series, standard deviations between the coefficient series and GCV410

smoothing spline fits (solid curves) are given in each case. Although robust estimation has been em-411

ployed when deriving these models, outliers can be seen in the both series. A change in the sign of412

the trend in the SV signal is evident, especially in the sectorial coefficients ḣ33, ḣ
4
4, ḣ

5
5, but also in the413

ḣ35 coefficient centered on 2017. Figure 8 collects such standard deviations for SH degrees and order414

up to 12, from models derived using the GVO vector (left plot) and GVO gradient (right plot) series.415

We generally find less scatter in the GVO gradient series, and especially in the zonal and near-zonal416

(wherem is close to zero) coefficients. For the sectorial terms the scatter levels are low for both series.417

Use of the vector series results in higher scatter levels for the near-zonal terms for degrees n > 2418

and orders m ≤ 2. When also including an external SH expansion for the GVO vector series (middle419

plot), we are able to reduce the scatter level in the near-zonal coefficients (middle plot of Figure 8),420

illustrating that using the GVO gradient elements in SH modelling helps in excluding external field421

signals. Note here that we focus on comparing SH models derived from GVO vector data with those422

derived solely using GVO gradient data (including an external SH expansion for the GVO gradient423

series would require vector information as well to obtaining a robust estimation). Global maps (not424

shown) show that much of the enhanced scatter is related to signals in polar regions being spuriously425

mapped into the internal field.426
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Figure 7. Series of first time derivatives for example internal coefficients dgmn /dt and dhmn /dt derived from

GVO vector (blue dots) and GVO gradient (red dots) data. Standard deviations of differences between the series

and a GCV smoothing spline fit (solid curves) to the coefficients are given. Units are nT/yr.

5 DISCUSSION AND CONCLUSIONS427

In this study we have extended the existing GVO concept and derived time series of the second-428

order gradient tensor elements of the geomagnetic field at a global network of 300 locations. We have429

computed such GVO gradient time series from the mean and differences of vector magnetic field430
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the coefficients dgmn /dt, while negative orders refer to dhmn /dt coefficients. Units are nT/yr.
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measurements, along track and in the east-west direction, from the low Earth orbiting CHAMP and431

Swarm satellites.432

The scatter levels for the SV of the gradient tensor elements are higher during CHAMP times433

than during Swarm times. The orbital configuration of the three Swarm satellites is clearly advanta-434

geous when computing the gradient tensor as more data are available and Swarm Bravo, having a435

slightly higher altitude than Alpha and Charlie, provides more information on the radial gradient and436

enables better potential determination and superior rms misfit statistics. Higher levels of scatter at437

polar latitudes are likely due to contaminating fields from polar current systems, while the generally438

larger misfits during CHAMP times at all latitudes as compared to Swarm times, are likely due to less439

complete data coverage and the closer proximity of the lower flying CHAMP satellite to ionospheric440

current systems. The SV gradient tensor elements [∇B]θθ and [∇B]rθ, show lower levels of scatter441

compared to the other tensor elements, at both polar and at non-polar regions, correctly weighting the442

various components will be important for future applications.443

In order to test for possible improvements in retrieving the SV signal using GVO gradient tensor444

data alone, we produced simple unregularized SH field models built from the GVO gradient and vector445

data derived using Swarm measurements. Comparing the power spectra of these models supports446

the findings of Kotsiaros & Olsen (2014), that harmonics of the SV above degree 6 can be better447

resolved when using gradient tensor data than using vector data. In particular, analysis of the first time448

derivatives of the SH coefficients, shows that especially zonal and near-zonal harmonics of models449

derived from GVO gradients have less scatter compared to similar models derived from GVO vector450

data.451

Inspecting SV gradient tensor elements for a GVO located above the Honolulu ground observatory452

we found evidence in the gradient series for a regional jerk-type event centered on 2017, observed as a453

characteristic ”V ” shaped change in the d [∇B]rr /dt and d [∇B]rθ /dt elements, and as a ”Λ” shape454

in the d [∇B]θθ /dt and d [∇B]φφ /dt elements. In the global GVO SV gradient element records,455

spanning the years from 2014 to 2020, we find evidence for robust time variations in many of the456

tensor elements. In particular, intense fluctuations in the Pacific region confined in longitude, suggest457

a regionally localized geomagnetic impulse event taking place around 2017. This is consistent with458

ground observatory measurements of the SV of the radial magnetic field component at the Honolulu459

observatory (e.g. Finlay et al. 2020; Sabaka et al. 2018). By changing the geomagnetic quiet-time and460

local time selection criteria, we see little change in the amplitude of this jerk signal, supporting the461

hypothesis that the 2017 event is of internal origin. At the Earth’s surface nearby patches of intense462

change in the SA gradient field, with opposite signs, occurs between 2015.5 and 2018.5. These are463

found to be limited to latitudes between 25◦S to 25◦N and to longitudes between 140◦ to 220◦E. In464
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particular, two strong patches of change in the radial gradient of the radial field, with opposite signs,465

locate the centre of the 2017 jerk event to approximately 0◦N and 170◦E in the central Pacific.466

Various geophysical explanations of geomagnetic jerk events, similar to those we have highlighted467

here in the Pacific region, have been proposed. The possibilities still under discussion include equa-468

torially trapped MAC waves in a possible stratified layer close to the core surface (Buffett & Matsui469

2019; Chi-Durán et al. 2020) and equatorial focusing of hydrodynamic waves originating from turbu-470

lent convection deep within the core (Aubert & Finlay 2019; Gerick et al. 2021). In that connection the471

new concept of GVO gradient tensor time series may aid future studies of the appearance and dynam-472

ics of geomagnetic jerks, related changes in core flows and core dynamics via e.g. data assimilation.473

We have shown that some GVO gradient tensor elements are less affected by correlated errors474

due to external field unmodelled signals, compared with vector field components. In a follow-up study475

with Prof. K. Whaler (in prep), we shall present computations and investigations of core surface flows476

derived from GVO gradient tensor elements series, paying particular attention to the jerk in the Pacific477

region in 2017.478

AVAILABILITY OF DATASETS AND MATERIAL479

The GVO gradient tensor data underlying this article and their associated uncertainty estimates are480

available from https://data.dtu.dk/, at (Hammer et al. 2021b). The datasets used in this arti-481

cle are available in the following repositories: Swarm data are available from https://earth.482

esa.int/web/guest/swarm/data-access; CHAMP data are available from https://483

isdc.gfz-potsdam.de/champ-isdc; Ground observatory data are available from ftp://484

ftp.nerc-murchison.ac.uk/geomag/Swarm/AUX_OBS/hour/; The RC-index is avail-485

able from http://www.spacecenter.dk/files/magnetic-models/RC/; The CHAOS-486

7 model and its updates are available at http://www.spacecenter.dk/files/magnetic-models/487

CHAOS-7/; solar wind speed, interplanetary magnetic field, and Kp-index are available from https:488

//omniweb.gsfc.nasa.gov/ow.html.489
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APPENDIX A: THE MAGNETIC FIELD GRADIENT TENSOR AND GENERAL602

COORDINATE TRANSFORMATIONS603

Here we provide details on the magnetic gradient tensor and how its elements transform between604

different coordinate systems. In particular, we are interested in the transformation relations between605

the tensor components of the local topocentric Cartesian coordinate system described in Section 3.1606

and the spherical coordinate system. Formulations from gravimetry of the gravitational gradient tensor607

(also referred to as the Marussi tensor) can be found in Reed (1973); Koop (1993); Casotto & Fantino608

(2009); Tscherning (1976). Here we follow the notation of Casotto & Fantino (2009), which is inspired609

by common usage in general relativity. The reader should however take care concerning the differences610

between the magnetic and gravity cases, and in particular, of the coordinate systems adopted, i.e. their611

orientation and whether they are left- or right-handed systems.612

Referring to a point P (which would denote a given GVO target point), the usual geocentric613

system is given by the Cartesian coordinates as x̃p = (x̃, ỹ, z̃) and by the spherical polar coordinates614

as (r, θ, φ), where θ is the colatitude. The geocentric system can be described by the Cartesian unit615

vectors (̂i1, î2, î3) denoting the basis ip. At P a local Cartesian coordinate system (z, x, y) is defined616

by the basis ep where p = 1, 2, 3, which is same one as used in GVO method, see Section 3.1. This617

covariant right-handed orthogonal basis is determined by the components of the partial derivatives of618

the position vector r as: e1 = ∂r/∂r pointing radially outwards, e2 = ∂r/∂θ pointing to the south619

and e3 = ∂r/∂φ pointing to the east, i.e. similar to the spherical polar basis vector at the target point620

P . Notice that while the basis vectors ip are constant in magnitude and direction, the basis vectors ep621

have constant magnitude but their directions vary (the same goes for the spherical basis vectors). Thus622

when computing the spatial derivatives of a vector, the basis vectors also needs to be differentiated623

as these depend on position. The position vector from origin O to the point P can be written by the624

geocentric Cartesian coordinates as (Riley et al. 2004)625

r = x̃̂i1 + ỹ̂i2 + z̃̂i3 = x̃pip, (A.1)626

where the summation convention has been used. The Cartesian coordinates are related to the spherical627

coordinates via (Riley et al. 2004, p. 363)628

r =


x̃

ỹ

z̃

 = r


sinθcosφ

sinθsinφ

cosθ

 . (A.2)629

The magnetic scalar potential, V , can be considered as a tensor of zero-order (or rank). The gradient630

operator in the generalized coordinates up, where p = 1, 2, 3, having the covariant basis ep = ∂r/∂up631
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and contravariant basis ep can be defined as (Riley et al. 2004; Casotto & Fantino 2009)632

∇ = ep
∂

∂up
. (A.3)633

Applying the gradient operator to the potential generates a new tensor of one order higher, which is634

the first-order tensor (vector) describing the magnetic field635

∇V =
1

hp
Vpe

p, (A.4)636

where we use the notation Vp = ∂V/∂up. The metric scale factor hp is determined by the elements637

of the metric tensor gpq = ep · eq (which completely characterize any curvilinear coordinate system)638

as hp =
√
gpp. Note that the metric tensor also facilitates the conversion between covariant and con-639

travariant bases (Riley et al. 2004; Casotto & Fantino 2009). Here we follow Casotto & Fantino (2009)640

and denote the actual elements of the first-order gradient tensor by a semicolon notation641

V;p =
1

hp
Vp (A.5)642

in order to distinguish them from first order derivatives. Applying the gradient operator to eq.(A.3),643

produces the second-order gradient operator644

∇∇ = eq
∂

∂uq

(
ep

∂

∂up

)
645

= epeq
(

∂2

∂up∂uq
− Γspq

∂

∂us

)
, (A.6)646

647

where Γspq denotes the Christoffel’s symbols of the second kind (an array of numbers describing the648

derivatives of the covariant basis vector along that same basis), which can be expressed in terms of the649

metric tensor as (Riley et al. 2004, p. 814)650

Γspq =
1

2
gst
(
∂gqt
∂up

+
∂gpt
∂uq

− ∂gpq
∂ut

)
. (A.7)651

Applying the operator eq.(A.6) to the magnetic potential V generates the second-order magnetic gra-652

dient tensor elements (again adopting the semicolon notation in order to distinguish tensor elements653

e.g V;rr from the second derivative Vrr = ∂2V/∂r2), which can be written using the Christoffel’s654

symbols655

V;pq =
1

hphq

(
∂2V

∂up∂uq
− Γspq

∂V

∂us

)
. (A.8)656

An essential aspect of the first- and second-order tensors is how their elements V;p′ or V;p′q′ in one657

coordinate system up
′

transforms to a new coordinate system up (Casotto & Fantino 2009; Riley et al.658
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2004, p. 811)659

V;p =
hp′

hp

∂up
′

∂up
V;p′ (A.9)660

V;pq =
hp′

hp

hq′

hq

∂up
′

∂up
∂up

′

∂uq
V;p′q′ , (A.10)661

662

where the partial derivatives ∂up
′
/∂up are expressed by the Jacobian matrix. The Jacobian matrix663

times the metric scale factor term, can be regarded as a rotation matrix such that we may re-write664

eqs.(A.9) and (A.10)665

V;p = V;p′R (A.11)666

V;pq = RV;p′q′R
T , (A.12)667

668

having the transformation matrix determined as669

R =
∂up

′

∂up
D, (A.13)670

whereD = diag(hp′/hp) = diag(h1′/h1, h2′/h2, h3′/h3) is a diagonal 3×3 matrix of the scale factor671

ratios between the two coordinate systems. Thus equations (A.9) and (A.10) (equivalently eqs.(A.11)672

and (A.12)) allow us to transform the tensors in one coordinate system, for instance the global (x̃, ỹ, z̃),673

to another, for instance (r, θ, φ). Let us now consider the two transformations:674

a) Transformation from the global Cartesian (x̃, ỹ, z̃) to the spherical system (r, θ, φ)675

b) Transformation from the spherical system (r, θ, φ) to the local system (x, y, z)676

First, we specify the inner products of the basis vectors, the covariant metric tensors for the Cartesian677

system678

gpg = ep · eq =


1 0 0

0 1 0

0 0 1

 . (A.14)679

and the spherical system680

gpg = ep · eq =


1 0 0

0 r2 0

0 0 r2sin2θ

 . (A.15)681

Thus the metric scale factors of the Cartesian system become682

hx̃ = 1, hỹ = 1, hz̃ = 1, (A.16)683
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and for the spherical system684

hr = 1, hθ = r, hφ = rsinθ. (A.17)685

The Christoffel’s symbols determined by eq.(A.7) yields 27 values of which 9 are non-zero686

Γ1
pq =


0 0 0

0 −r 0

0 0 −rsin2θ

687

Γ2
pq =


0 1

r 0

1
r 0 0

0 0 −cosθsinθ

688

Γ3
pq =


0 0 1

r

0 0 cosθ
sinθ

1
r

cosθ
sinθ 0

 . (A.18)689

690

Note that for the Cartesian system the Christoffel’s symbols are zero as the metric tensor is the iden-691

tity matrix. In case a) the Jacobian matrix between the spherical coordinates up = (r, θ, φ) and the692

Cartesian coordinates up
′

= x̃p = (x̃, ỹ, z̃) is693

(
∂up

′

∂up

)
=
∂(x̃, ỹ, z̃)

∂(r, θ, φ)
=


∂x̃
∂r

∂x̃
∂θ

∂x̃
∂φ

∂ỹ
∂r

∂ỹ
∂θ

∂ỹ
∂φ

∂z̃
∂r

∂z̃
∂θ

∂z̃
∂φ

 =


sinθcosφ rcosθcosφ −rsinθsinφ

sinθsinφ rcosθsinφ rsinθcosφ

cosθ −rsinθ 0

 , (A.19)694

while in case b) the Jacobian matrix between the local Cartesian coordinates up = (z, x, y) and the695

spherical coordinates up
′

= (r, θ, φ) is696

(
∂up

′

∂up

)
=
∂(r, θ, φ)

∂(z, x, y)
=


∂r
∂z

∂r
∂x

∂r
∂y

∂θ
∂z

∂θ
∂x

∂θ
∂y

∂φ
∂z

∂φ
∂x

∂φ
∂y

 =


1 0 0

0 1 0

0 0 1

 . (A.20)697

Considering case a), we use eqs.(A.11) and (A.12) to obtain the relations written here in matrix form698

∂V

∂(r, θ, φ)
=

∂V

∂(x̃, ỹ, z̃)
R (A.21)699

∂2V

∂(r, θ, φ)2
= R

∂V

∂(x̃, ỹ, z̃)2
RT , (A.22)700

701

where R is determined by eq.(A.13) using eqs.(A.16), (A.17) and (A.19).702

Likewise considering case b), we use the relations eqs.(A.11) and (A.12) written here in matrix703
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form704

∂V

∂(z, x, y)
=

∂V

∂(r, θ, φ)
R (A.23)705

∂2V

∂(z, x, y)2
= R

∂V

∂(r, θ, φ)2
RT , (A.24)706

707

where R is determined by eq.(A.13) using eqs.(A.16), (A.17) and (A.20). Here the first-order tensor708

(i.e. the magnetic field vector) in the spherical polar coordinates is given by eq.(A.4) using the metric709

scale factors eq.(A.17)710

∇V = Vrêr +
1

r
Vθêθ +

1

rsinθ
Vφêφ, (A.25)711

such that the first-order magnetic tensor elements in the local Cartesian system by eq.(A.23) are given712

by the relations713

V;z = Vr, V;x =
1

r
Vθ, V;y =

1

rsinθ
Vφ. (A.26)714

The second-order tensor in the spherical polar coordinates is given by eq.(A.8) using the Christoffel’s715

symbols from eq.(A.18) and metric scale factors eq.(A.17)716

∇∇V = Vrrêrêr +

(
1

r
Vθr −

1

r2
Vθ

)
êrêθ +

(
1

rsinθ
Vφr −

1

r2sinθ
Vφ

)
êrêφ717

+

(
1

r
Vrθ −

1

r2
Vθ

)
êθêr +

(
1

r2
Vθθ −

1

r
Vr

)
êθêθ +

(
1

r2sinθ
Vφθ −

cosθ

r2sin2θ
Vφ

)
êθêφ718

+

(
1

rsinθ
Vrφ −

1

r2sinθ
Vφ

)
êφêr +

(
1

r2sinθ
Vθφ −

cosθ

r2sin2θ
Vφ

)
êφêθ + · · ·719

+

(
1

r2sin2θ
Vφφ +

1

r
Vr +

cosθ

r2sinθ
Vθ

)
êφêφ. (A.27)720

721

Note here the convention of notation Vrr = ∂2V/∂r2 and Vθr = ∂2V/∂θ∂r which is different from722

the tensor element notation i.e. V;rr and V;θr. This means that the relations between the gradient tensor723

elements in the local Cartesian system and the gradient tensor described in the spherical system are724
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given by eq.(A.24)725

V;zz = Vrr726

V;xz =
1

r
Vθr −

1

r2
Vθ727

V;yz =
1

rsinθ
Vφr −

1

r2sin2θ
Vφ728

V;zx =
1

r
Vrθ −

1

r2
Vθ729

V;xx =
1

r2
Vθθ +

1

r
Vr730

V;yx =
1

r2sin2θ
Vφθ −

cosθ

r2sin2θ
Vφ731

V;zy =
1

rsinθ
Vrφ −

1

r2sinθ
Vφ732

V;xy =
1

r2sinθ
Vθφ −

cosθ

r2sin2θ
Vφ733

V;yy =
1

r2sin2θ
Vφφ +

1

r
Vr +

cosθ

r2sinθ
Vθ. (A.28)734

735

At the position P (being the GVO target point), we therefore have the following identifications be-736

tween the tensor elements in the local Cartesian and the spherical systems737

V;zz = V;rr V;zx = V;rθ V;zy = V;rφ (A.29)738

V;xz = V;θr V;xx = V;θθ V;xy = V;θφ (A.30)739

V;yz = V;φr V;yx = V;φθ V;yy = V;φφ. (A.31)740
741

In order to express the gradient tensor in Cartesian coordinates, we note that the metric tensor becomes742

the identity matrix meaning that the metric scale factors hp becomes unity, and all of the Christoffel’s743

symbols becomes zero such that the gradient tensor is given by eq.(A.8)744

∇B = −


∂2V
∂z2

∂2V
∂x∂z

∂2V
∂y∂z

∂2V
∂z∂x

∂2V
∂x2

∂2V
∂y∂x

∂2V
∂z∂y

∂2V
∂x∂y

∂2V
∂y2

 = −


V;zz V;zx V;zy

V;xz V;xx V;xy

V;yz V;yx V;yy

 =


[∇B]zz [∇B]zx [∇B]zy

[∇B]xz [∇B]xx [∇B]xy

[∇B]yz [∇B]yx [∇B]yy

 ,

(A.32)

745

746

where the minus sign comes from defining the field as the negative gradient of the potential. We recall747

that the semicolon notation denotes tensor elements following Casotto & Fantino (2009), and not the748

second order spatial derivatives. However, in the case of the gradient tensor in Cartesian coordinates,749

these two are equivalent cf. eq.(A.32).750
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[H]

Figure A1. All terms of the SV gradient tensor at the Earth’s surface in 2018.0, CHAOS-7 for n ≤ 16.

APPENDIX B: SV FIELD GRADIENT TENSOR751

Using the CHAOS-7 model for degrees n ≤ 16 (Finlay et al. 2020), predictions of the SV gradient752

tensor elements at the Earth’s surface in 2018.0 are shown in Figure A1. Figure A2 presents the753

”gradient term” elements of the SV gradient tensor while Figure A3 presents the ”field term” elements754

of the SV gradient tensor. Here it should be noted that the trace of the tensor is only zero when755

considering the complete gradient tensor (Figure A1), and not when look at the ”field derivative term”756

(Figure A2) and ”field term” (Figure A3) parts.757
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[H]

Figure A2. First terms of the SV gradient tensor at the Earth’s surface in 2018.0, CHAOS-7 for n ≤ 16.

[H]

Figure A3. Second terms of the SV gradient tensor at the Earth’s surface in 2018.0, CHAOS-7 for n ≤ 16.


