Outline of the joint Swedish and Danish fisheries research/fishing industry survey for cod in the Kattegat

December 2011

National Institute of Aquatic Resources
Technical University of Denmark
Charlottenlund Slot, DK-2920 Charlottenlund Denmark
Marie Storr-Paulsen Ole Jørgensen

Fiskerivärke \dagger

Box 423, 40126 , Göteborg
Sweden
Katja Ringdahl Johan Løvgren

Introduction

Since 2003 the cod fishery in Kattegat has been restricted by steadily decreasing quotas due to low abundance of cod estimated from the cod assessment. ICES consider, however, the cod assessment in Kattegat uncertain due to the catch data quality and the analytic assessment has not been accepted by ACFM in recent years. The assessment has shown a discrepancy between the estimated fishing mortality and the reported landings and ICES assumed that the majority of the unallocated mortality was caused by discard, but other factors such as migration, non reported landings and reallocation of catches also could be part of the problem. Furthermore, the surveys conducted at present in the Kattegat area are not very suited for estimation of cod abundance mainly due to the low coverage and sampling intensity. The abundance estimate in the areas is hence rather uncertain and only shows trends in stock development, and the assessment of the cod stock would, without doubt, benefit significantly from a survey directly aimed at cod. The 5 August 2006 a tender was submitted by Swedish Board of Fisheries, Institute of Marine Research (IMR-SE) in response to the open call for tenders, Reference No FISH/2006/15 Studies and Pilot projects for carrying out the common fisheries policy, Lot No 3: "Evaluation of the pilot effort regime in Kattegat" from Directorate-General for Fisheries and Maritime Affairs.

Both Swedish and Danish scientists and the fishermen's organisations aggress that the poor survey quality hampers the assessment of the cod stock in Kattegat and an expert group consisting of people from the fisherman's organisations and scientists has designed an improved survey. The initiative has been taken by the LOT 3 project group and was originally a strictly Swedish project. However, the involvement of Denmark has been considered as an improvement of the project and the survey has been designed in all details in agreement between fishers and scientists from both countries.

The goal

The goal of the Kattegat cod survey is to estimate the abundance, biomass and distribution of cod and to establish a fisheries independent time series of catch and effort series. Furthermore, a recruitment index will be established. The results should be used, together with commercial catch and effort data to strengthen the scientific advice on the cod stock in Kattegat. The survey will also monitor the amount and distribution of cod within the proposed "closed area" in order to analyse the effect of the closure.

Restrictions

The 4 commercial trawlers participating in the survey conduct the survey without any restrictions in the vessels quota, days at sea regulation and with dispensation from all by-catch regulations.

Survey design

Survey area

The survey area is restricted to the Kattegat area covering from Skagen, to the Tistlarna lighthouse and in south by an south-eastwards line between Ellekilde Hage and Lerbjerg and south-westwards
by a line between Gniben og Hassensør on Djursland.. Further, the area is restricted by the 20 m depth contour line and the area is split in areas "North" and "South" (Fig. 1).
However, in two fjords Laholmsbugten and Skældervigen fishing at stations shallower than 20 meter will take place and 1 or two stations will be placed in a small area in The Sound "Kilen"..

Survey method and stratification

The survey is designed as a random stratified bottom trawl survey. The survey area is stratified in three strata: a stratum with high cod density, a stratum with medium density and a stratum with low cod density based on information from the fishers. Each stratum is further subdivided in $5 * 5 \mathrm{~nm}$ squares (Fig. 1). Most stations according to the area are allocated to the high density stratum. In the forthcoming years stations will be allocated to the different strata in order to minimize the variance of the estimation of the cod biomass. The survey design allows a post-stratification of the survey area if necessary without loosing comparability with previous surveys and hence to take changes in the main focus area into account if the stock distribution is changing between years or the stock is increasing or decreasing.

Station (tow) location

The survey is planed with in average 3.3 trawl hauls per day in 6 days for each of the 4 vessels i.e in total 80 trawl hauls. The hauls are allocated randomly to the $5 * 5 \mathrm{~nm}$ squares and each vessel is allocated 20 different squares. In the high and medium density strata several vessels are allowed to fish in the same square. In the low density stratum only one haul is allowed in each square. Furthermore the low density area is divided in a Southern and Northern area.

Numbers of stations by vessel, stratum and area

Ship	High density	Medium density	Low density (South)	Low density (North)	Total
Den $_{1}$	6	8	6		20
Den $_{2}$	6	8		6	20
Swe $_{1}$	6	8	6		20
Swe $_{2}$	6	8		6	20

Target species

The survey is directed to demersale species in Kattegat, but designed for cod. The catch of all species is, however, recorded and the survey results are also made available for the assessment of sole, plaice and Norwegian lobster.

Survey period

The survey will take place during November 22 - December 10-2010. There is planned with 6 fishing days for each vessel. The survey period can, however, be extended in case of bad weather or technical problems. Trawling is restricted to 15 min . before sunrise to 15 min . after sun set.

Vessels and Fishing gear

Vessels
The survey is conducted by three commercial chartered trawlers and 1 scientific vesel, two covering the northern and two the southern area, respectively. Two vessels are Swedish and the other two are Danish. The vessels have been appointed due to the similarity in engine power, length and applicability for scientific investigations. Further, it has been taken into considerations that the owner of the vessel will participate in the surveys in the future. In 2010 one of the Danish commercial vessel was sold and Havfisken, the Danish scientific vessel was included instead after a thorough discussion with the seine maker.

DK-Vessel 1

Danish participant	1 (Havfisken)
Engine (KW):	368 kW
Tonnage (BRT):	20
Length (m):	13
Door type/size	
Owner	DTU - Aqua

DK-Vessel 2

Danish participant
Engine (KW):
Tonnage (BRT):
Length (m):
Door type/size
Owner

2 (FN370- Susanne H)
220 kW
52.6
18.4

Hans Jørgen Hansen

SW-Vessel 1

Swedish participant	1 (VG $37-$ Ganler)
Engine (KW):	373 kW
Tonnage (BRT):	74
Length (m):	17.94
Door type/size	
Owner	Kjell Svahn

SW-Vessel 2

Swedish participant
Engine (KW):
Tonnage (BRT):
Length (m):
Door type/size

2 (VG 104 - Tärnan)
272 kW
68
15.73

Gear
The trawl is a commercial bottom trawl provided by the LOT 3 project.
Trawl (see annex): A Swedish TV-trawl 112 ft 24-464
13 pieces of 8 '' balls and 16 pieces of $6^{\prime \prime}$ balls.
4 thumps rubber discs at 10 cm
Mesh size in cod end: 70 mm stretch mesh.
Otter boards: 64"-66" "Thyborøn"
Warp: 35 mm .
Mellem liner der benyttes må i 2010 varierer i længden mellem 54 og 154 meter. "Grimdelen" på 27 meter skal bi- beholdes hvilket gives en total længde på mellem 81 og 181 meter. Det er bare vigtigt at notere hvor lang en line der er benyttet.

The trawls are checked continuously during the survey.

Fishing operation

Within each square the skipper decides on the best way to fish at the location (e.g. exact position, tow direction). Such an approach has been used successfully in the north-eastern North Sea and the Skagerrak in comparable projects (Wieland et al. 2008).
Maximum 5 min of the total trawling time should be outside the allocated square. If the 5 minutes are exceeded the haul should be terminated.Trawl procedure:

Towing time: 60 min (towing time down to 20 min is accepted).
Towing speed: Between 2.7 kn . and 3.4 over the seabed, but speed should not vary within a station.
Hauls start: when the trawl is considered going stable on the bottom, roughly 5-7 min after wires are connected.
Haul end: when hauling back starts.
Trawled distance: is estimated from the plotter.

Sampling of catch

There will be two technicians/scientists from DTU-Aqua (Danish vessels) or from Fiskeriværket (Swedish vessels), who will be responsible for processing the catch, on board each vessel.
However, the crew should help the scientific staff whenever possible.
The catch will be processed in accordance with BITS standard operating procedures for trawl surveys. After each haul the catch is sorted by species and weighed to nearest 0.1 kg and the number of specimens recorded. All fish species are measured as total length (TL) to 1.0 cm below. Norwegian lobster is measured in mm.

Cod otoliths (2 per cm group) are sampled for age determination by each vessel in each of the two areas.

Additional scientific samples can be collected if requested (genetic, tagging, frozen samples, etc.).

Screening of data

All trawl data (position, wingspread, towing speed etc.) and catch and length frequency data on sole, cod, plaice and Norwegian lobster are screened for unrealistic figures before further estimations.

Data

Data are stored in a standard data base and can will, if the survey continues, be uploaded to the ICES DATRAS system.

Estimation of stock indices

CPUE
CPUE is estimated as mean catch (kg or number) per hour (cod also number by age per hour).

Biomass and abundance

Hence no stations are deeper than 100 m , biomass and abundance is estimated for depths between 20 and 100 m . The survey area is stratified in density strata and the area between 20 and 100 m has been estimated. The total survey area is $19037.6 \mathrm{~km}^{2}$ (Table 1).

Biomass and abundance estimates is based on the randomly selected stations and obtained by applying the swept area method:

Swept area $=($ estimated trawling speed $* 1.852) *$ wing spread $*$ trawling time/60
using the recorded towing speed, wing spread and trawling time and taking the catchability coefficient as 1.0 and the stratum area as weighting factor (Cohran, 1977).

All catches are standardized to $1 \mathrm{~km}^{2}$ swept prior to further calculations.

Reporting

The survey results are reported to WGBAFS as a working document. The document includes information about aerial distribution, CPUE, biomass, abundance and length frequencies on cod, sole, plaice and Norwegian lobster together with age distribution of cod.

References

Cochran, W.G. 1977. Sampling Techniques. Third edition. Wiley \& Sons.
ICES. 2005. Report of the Workshop on Survey Design and Data Analysis (WKSAD). ICES CM 2005/ B:07, 174 pp .

Wieland, K. and Storr-Paulsen, M. 2006. Effect of tow duration on catch and size composition of Northern shrimp (Pandalus borealis) and Greenland halibut (Reinhardtius hippoglossoides) in the West Greenland Bottom trawl survey. Fisheries Research 78: 276-285.

Wieland, K., E.M. Fenger Pedersen, H.J. Olesen \& J.E. Beyer (2008): Survey results from a Danish collaborative biologist-fishermen project on spatially-explicit management methods (REX) for North Sea cod. Working document, ICES WGNSSK, 7.-13. May 2008.

Fig. 1. Distribution of hauls by type and ICES squares. The yellow colour indicate stations from the southern Danish vessel.

Fig. 2. Distribution of hauls by type and ICES squares. The green colour indicate stations from the northern Danish vessel.

Fig. 3. Distribution of hauls by type and ICES squares. The red colour indicate stations from the northern Swedish vessel.

Fig. 4. Distribution of hauls by type and ICES squares. The blue colour indicate stations from the southern Swedish vessel.

Figure 1. The re-stratified areas with high (green), medium (yellow) and low (red) cod biomass.

stat	lat		long
68	56,11718	10,98072	
69	56,20033	10,98501	
91	56,19785	11,13415	
138	56,44170	11,44828	
157	56,18931	11,58144	
158	56,27243	11,58704	
190	57,10016	11,79737	
211	57,01358	11,94343	
225	56,34533	12,04162	
232	56,92684	12,08881	
233	57,00990	12,09570	
247	56,34156	12,19120	
271	56,50372	12,35536	
295	56,66564	12,52094	
209	56,84742	11,93037	
250	56,59075	12,21219	
251	56,67381	12,21926	
252	56,75687	12,22637	
253	56,83993	12,23352	
273	56,66982	12,37012	

Figure and table 2. Positions for the Danish vessel Havfisken in the South western area.

stat	lat	long
162	56,60486	11,60973
179	56,18611	11,73047
202	56,26582	11,88572
223	56,17917	12,02845
269	56,33762	12,34075
292	56,41653	12,49787
169	57,18657	11,65063
185	56,68470	11,76648
204	56,43200	11,89831
205	56,51509	11,90465
227	56,51148	12,05492
233	57,00990	12,09570
293	56,49957	12,50551
315	56,49524	12,65563
206	56,59817	11,91103
207	56,68126	11,91744
250	56,59075	12,21219
251	56,67381	12,21926
253	56,83993	12,23352
274	56,75287	12,37756

Figure and table 3. Positions for the Swedish vessel VG 104 Tärnan in the South eastern area.

stat | lat | | long |
| ---: | ---: | ---: |
| 41 | 57,53518 | 10,74764 |
| 42 | 57,61832 | 10,75163 |
| 62 | 57,44981 | 10,89790 |
| 64 | 57,61608 | 10,90656 |
| 107 | 57,52791 | 11,21130 |
| 108 | 57,61103 | 11,21635 |
| 170 | 57,26966 | 11,65660 |
| 183 | 56,51851 | 11,75435 |
| 212 | 57,09665 | 11,95002 |
| 228 | 56,59455 | 12,06163 |
| 232 | 56,92684 | 12,08881 |
| 248 | 56,42463 | 12,19816 |
| 270 | 56,42067 | 12,34803 |
| 295 | 56,66564 | 12,52094 |
| 207 | 56,68126 | 11,91744 |
| 209 | 56,84742 | 11,93037 |
| 229 | 56,67763 | 12,06837 |
| 250 | 56,59075 | 12,21219 |
| 251 | 56,67381 | 12,21926 |
| 252 | 56,75687 | 12,22637 |

Figure and table 4. Positions for the Danish vessel Susanne H in the North western area.

stat	lat		long
162	56,60486	11,60973	
179	56,18611	11,73047	
202	56,26582	11,88572	
223	56,17917	12,02845	
269	56,33762	12,34075	
292	56,41653	12,49787	
169	57,18657	11,65063	
185	56,68470	11,76648	
204	56,43200	11,89831	
205	56,51509	11,90465	
227	56,51148	12,05492	
233	57,00990	12,09570	
293	56,49957	12,50551	
315	56,49524	12,65563	
206	56,59817	11,91103	
207	56,68126	11,91744	
250	56,59075	12,21219	
251	56,67381	12,21926	
253	56,83993	12,23352	
274	56,75287	12,37756	

Figure and table 5. Positions for the Swedish vessel VG 37 Ganler in the North eastern area.

Table 1. Area $\left(\mathrm{km}^{2}\right) 20-120 \mathrm{~m}$ depth by depth area.

High density	Medium density	Low density	All
16 squares	34 squares	68 squares	118 squares
$1372 \mathrm{~km}^{2}$	$2915.5 \mathrm{~km}^{2}$	$5831 \mathrm{~km}^{2}$	$10118.5 \mathrm{~km}^{2}$

Station allocation

Station	Ce	center_x	Station	Center_y	enter_x	Station	Center	center_x
	55.95720	10.52753	51	56.53524	10.85190	101	57.02918	11.18159
	56.04037	10.53082	52	56.61839	10.85597	102	57.11230	11.18647
2	56.12354	10.53412	53	56.70154	10.86006	103	57.19543	11.19138
3	56.20670	10.53744	54	56.78469	10.86418	104	57.27855	11.19632
4	56.28987	10.54078	55	56.86783	10.86831	105	57.36167	11.20129
5	56.37304	10.54413	56	56.95098	10.87247	106	57.44479	11.20628
6	56.45620	10.54751	57	57.03412	10.87665	107	57.52791	11.21130
7	56.53937	10.55090	58	57.11726	10.88086	108	57.61103	11.21635
8	56.62253	10.55431	59	57.20040	10.88508	109	57.69414	11.22142
9	56.70569	10.55773	60	57.28354	10.88933	110	55.94578	11.26857
10	56.78885	10.56118	61	57.36668	10.89360	111	56.02891	11.27345
11	56.87201	10.56464	62	57.44981	10.89790	112	56.11205	11.27835
12	56.95516	10.56813	63	57.53295	10.90222	113	56.19518	11.28327
13	57.03832	10.57163	64	57.61608	10.90656	114	56.27831	11.28823
14	57.12147	10.57515	65	57.69921	10.91093	115	56.36144	11.29321
15	57.20463	10.57869	66	55.95088	10.97222	116	56.44457	11.29821
16	57.28778	10.58225	67	56.03403	10.97646	117	56.52770	11.30325
17	57.37093	10.58583	68	56.11718	10.98072	118	56.61082	11.30831
18	57.45408	10.58943	69	56.20033	10.98501	119	56.69395	11.31339
19	57.53723	10.59304	70	56.28348	10.98931	120	56.77707	11.31851
20	57.62038	10.59668	71	56.36662	10.99365	121	56.8601	11.32365
21	57.70352	10.60034	72	56.44977	10.99800	122	56.9433	11.32882
22	55.95527	10.67578	73	56.53291	11.00237	123	57.0264	11.33402
23	56.03843	10.67939	74	56.61605	11.00678	124	57.10955	11.33924
24	56.12160	10.68301	75	56.69919	11.01120	125	57.19266	11.34450
25	56.20476	10.68665	76	56.78233	11.01565	126	57.27578	11.34978
26	56.28792	10.69031	77	56.86547	11.02012	127	57.35889	11.35509
27	56.37108	10.69399	78	56.94861	11.02461	128	57.44200	11.36043
28	56.45424	10.69769	79	57.03174	11.02913	12	57.5251	11.36580
29	56.53740	10.70141	80	57.11488	11.03368	130	57.6082	11.37120
30	56.62055	10.70515	81	57.19801	11.03825	131	57.69132	11.37663
31	56.70371	10.70891	82	57.28114	11.04284	132	55.94296	11.41671
32	56.78686	10.71269	83	57.36427	11.04746	133	56.02609	11.42190
33	56.87001	10.71649	84	57.44740	11.05210	134	56.10921	11.42712
34	56.95316	10.72031	85	57.53052	11.05677	135	56.19234	11.43237
35	57.03631	10.72415	86	57.61365	11.06147	136	56.27546	11.43765
36	57.11946	10.72801	87	57.69677	11.06619	137	56.35858	11.44295
37	57.20261	10.73190	88	55.94842	11.12041	138	56.44170	11.44828
38	57.28575	10.73580	89	56.03156	11.12497	139	56.52482	11.45364
39	57.36890	10.73973	90	56.11470	11.12955	140	56.60793	11.45903
40	57.45204	10.74367	91	56.19785	11.13415	141	56.69105	11.46445
41	57.53518	10.74764	92	56.28098	11.13878	142	56.77416	11.46990
42	57.61832	10.75163	93	56.36412	11.14344	143	56.85727	11.47537
43	57.70146	10.75565	94	56.44726	11.14812	144	56.94038	11.48088
44	55.95316	10.82401	95	56.53039	11.15282	145	57.02349	11.48642
45	56.03632	10.82793	96	56.61353	11.15755	146	57.10660	11.49198
46	56.11948	10.83188	97	56.69666	11.16231	147	57.18971	11.49758
47	56.20263	10.83584	98	56.77979	11.16709	148	57.27281	11.50321
48	56.28579	10.83982	99	56.86292	11.17190	149	57.35592	11.50886
49	56.36894	10.84383	100	56.94605	11.17673	150	57.43902	11.51455

Station Center_y center_x Station Center_y center_x Station Center_y center_x Station Center_y center_x 15257.6052211 .52602 15357.6883111 .53180 15455.9399711 .56482 15556.0230811 .57033 15656.1062011 .57587 15756.1893111 .58144 15856.2724311 .58704 15956.3555411 .59266 16056.4386511 .59832 16156.5217611 .60401 16256.6048611 .60973 16356.6879711 .61548 16456.7710711 .62126 16556.8541711 .62707 16656.9372711 .63291 16757.0203711 .63879 16857.1034711 .64469 16957.1865711 .65063 17057.2696611 .65660 17157.3527611 .66261 17257.4358511 .66864 17357.5189411 .67471 17457.6020311 .68081 17557.6851111 .68695 17655.9367911 .71290 17756.0199011 .71873 17856.1030111 .72459 17956.1861111 .73047 18056.2692111 .73640 18156.3523111 .74235 18256.4354111 .74833 18356.5185111 .75435 18456.6016111 .76040 18556.6847011 .76648 18656.7678011 .77259 18756.8508911 .77873 18856.9339811 .78491 18957.0170711 .79113 19057.1001611 .79737 19157.1832411 .80365 19257.2663311 .80997 19357.3494111 .81632 19457.4324911 .82270 19557.5155711 .82912 19657.5986511 .83557 19757.6817211 .84206 19855.9334411 .86095 19956.0165411 .86709 20056.0996311 .87327
$\begin{array}{lll}202 & 56.26582 & 1 \\ 203 & 56.34891 & 11.8 \\ 20\end{array}$ $20356.34891 \quad 11.8920$ 20456.4320011 .89831 $205 \quad 56.5150911 .90465$ 20656.5981711 .91103 $207 \quad 56.6812611 .91744$ 20856.7643411 .92389 $20956.84742 \quad 11.93037$ $210 \quad 56.93050 \quad 11.93688$ $211 \quad 57.01358 \quad 11.94343$ $212 \quad 57.09665 \quad 11.95002$ $213 \quad 57.17973 \quad 11.95664$ $214 \quad 57.26280 \quad 11.96330$ $215 \quad 57.34587 \quad 11.96999$ $216 \quad 57.4289411 .97672$ $217 \quad 57.51201 \quad 11.98349$ $218 \quad 57.59508 \quad 11.99029$ $219 \quad 57.6781411 .99713$ $22055.92991 \quad 12.00897$ $221 \quad 56.01300 \quad 12.01543$ 22256.0960812 .02192 $223 \quad 56.17917 \quad 12.02845$ 22456.2622512 .03502 $225 \quad 56.34533 \quad 12.04162$ $22656.42840 \quad 12.04825$ $227 \quad 56.51148 \quad 12.05492$ $\begin{array}{lll}228 & 56.59455 & 12.06163 \\ 229 & 56\end{array}$ $229 \quad 56.67763 \quad 12.06837$ $230 \quad 56.76070 \quad 12.07515$ 23156.8437712 .08196 23256.9268412 .08881 $23357.00990 \quad 12.09570$ $234 \quad 57.0929712 .10263$ $235 \quad 57.1760312 .10959$ $236 \quad 57.2590912 .11659$ $237 \quad 57.34215 \quad 12.12363$ $238 \quad 57.42521 \quad 12.13071$ $239 \quad 57.50827 \quad 12.13782$ $240 \quad 57.59132 \quad 12.14498$ $\begin{array}{llll}241 & 57.67437 & 12.15217\end{array}$ $242 \quad 55.92621 \quad 12.15695$ $243 \quad 56.00928 \quad 12.16373$ 24456.0923512 .17054 $245 \quad 56.17542 \quad 12.17739$ 24656.2584912 .18428 $247 \quad 56.34156 \quad 12.19120$ $248 \quad 56.4246312 .19816$ $249 \quad 56.50769 \quad 12.20516$ $250 \quad 56.5907512 .21219$
$\begin{array}{lll}251 & 56.67381 & 12.21926\end{array}$ $\begin{array}{llll}252 & 56.75687 & 12.22637\end{array}$ $253 \quad 56.83993 \quad 12.23352$ $254 \quad 56.92299 \quad 12.24071$ $255 \quad 57.0060412 .24793$ $256 \quad 57.08909 \quad 12.25520$ $257 \quad 57.1721412 .26250$ $\begin{array}{llll}258 & 57.25519 & 12.26984\end{array}$ $259 \quad 57.33824 \quad 12.27723$ $260 \quad 57.4212912 .28465$ $261 \quad 57.5043312 .29212$ $262 \quad 57.58737 \quad 12.29962$ $263 \quad 57.67041 \quad 12.30717$ $264 \quad 55.92232 \quad 12.30490$ $\begin{array}{lll}265 & 56.00538 & 12.31199 \\ 266 & 56.08844 & 12.31913\end{array}$ $\begin{array}{lll}266 & 56.08844 & 12.31913 \\ 267 & 56.17150 & 12.32630\end{array}$ $268 \quad 56.2545612 .33350$ $26956.33762 \quad 12.34075$ $270 \quad 56.42067 \quad 12.34803$ 27156.5037212 .35536 $27256.58677 \quad 12.36272$ 27356.6698212 .37012 27456.7528712 .37756 $275 \quad 56.83591 \quad 12.38504$ $\begin{array}{lll}276 & 56.91895 & 12.39256 \\ 277 & 57.00200 & 12.40013\end{array}$ $\begin{array}{llll}278 & 57.08504 & 12.40773\end{array}$ $279 \quad 57.16807 \quad 12.41537$ $280 \quad 57.25111 \quad 12.42306$ $281 \quad 57.3341412 .43079$ $282 \quad 57.41718 \quad 12.43856$ $283 \quad 57.50021 \quad 12.44637$ $284 \quad 57.58324 \quad 12.45423$ $285 \quad 57.66626 \quad 12.46212$ $286 \quad 55.91826 \quad 12.45281$ $287 \quad 56.00131 \quad 12.46022$ $\begin{array}{lll}288 & 56.08436 & 12.46767\end{array}$ $\begin{array}{llll}289 & 56.16740 & 12.47516\end{array}$ $290 \quad 56.25045 \quad 12.48269$ $291 \quad 56.33349 \quad 12.49026$ 29256.4165312 .49787 29356.4995712 .50551 $29456.58261 \quad 12.51320$ $295 \quad 56.6656412 .52094$ $296 \quad 56.74868 \quad 12.52871$ $297 \quad 56.83171 \quad 12.53652$ $298 \quad 56.9147412 .54438$ $299 \quad 56.99777 \quad 12.55228$ $300 \quad 57.0807912 .56022$
$\begin{array}{ll}301 & 57.16382 \\ 302 & 57.24684 \\ 303 & 57.32986\end{array}$ 12.57623 304 30457.4128812 .59242 30557.4959012 .60058 30657.5789112 .60879 30757.6619212 .61704 $308 \quad 55.9140212 .60069$ 30955.9970612 .60841 31056.0800912 .61618 31156.1631312 .62399 31256.2461612 .63183 $\begin{array}{lll}313 & 56.32919 & 12.63972 \\ 314 & 56.41221 & 12.64766\end{array}$ 31556.4952412 .65563 31656.5782612 .66365 $\begin{array}{lll}317 & 56.66128 & 12.67171\end{array}$ 31856.7443012 .67981 $31956.82732 \quad 12.68796$ 32056.9103412 .69615 $321 \quad 56.9933512 .70439$ $322 \quad 57.07636 \quad 12.71267$ 32357.1593712 .72099 32457.2423812 .72936 $325 \quad 57.3253912 .73778$ $\begin{array}{lll}326 & 57.40839 & 12.74624 \\ 327 & 57.49140 & 12.75475\end{array}$ $328 \quad 57.57440 \quad 12.76330$ $329 \quad 57.65740 \quad 12.77190$ $330 \quad 55.90961 \quad 12.74852$ 33155.9926312 .75656 $\begin{array}{lll}332 & 56.07565 & 12.76464 \\ & & \end{array}$ 33356.1586712 .77277 33456.2416812 .78094 $33556.32470 \quad 12.78915$ $336 \quad 56.40771 \quad 12.79741$ 33756.4907212 .80571 $338 \quad 56.5737312 .81405$ $\begin{array}{lll}339 & 56.65674 & 12.82244 \\ 340 & 56.73975 & 12.83088\end{array}$ 34156.8227512 .83936 $\begin{array}{llll}342 & 56.90575 & 12.84788\end{array}$ 34356.9887512 .85645 34457.0717512 .86507 $345 \quad 57.1547512 .87374$ $346 \quad 57.2377412 .88245$ $347 \quad 57.3207312 .89121$ $348 \quad 57.40372 \quad 12.90001$ $349 \quad 57.48671 \quad 12.90887$ $350 \quad 57.5696912 .91777$ $351 \quad 57.6526812 .92672$

Tabel 11. To eksempler pà hvordan afstanden mellem:skovlene kan bercgnes ud fra spiletiwirerne

1. metode

1) En pind, skruenğgle, kniy eller hvad man nu har for händen sattes ind, hvor afstanden mellem wirerne lige svarer tillangden af genstanden. Fra dette punkt finder man ud af: hvor mange gange dette mảl kan ligge langs wiren op til det sted; hyor wirerne gâr sammen.
2) Afstanden mellem skovlene fâs ved at dele wirelangden med xantallet af mảk: Eksempel: Fra det sted pả wirerne, hvor spredningen er 1 skrienggle, er der 5.5 . skruenggle op til hvor wirerne găr saminen.
Wirelangde:
$150 \mathrm{fv}=274 \mathrm{~m}$

Afstand mellem skovle:
$274.5,5=50$ m.

Fig. 33: To metoder til beregning af spileter her illustreret. Det letter udmålingen, hvis wirerne kan samles med et bandsel.

2. metode

1) Mâlafstanden mellem wirene 1 meter fra, hvor de går sammen:
2) Afstanden hér ganget med wirelangden giver aftanden mellem skovlene:

Eksenipel: Spredníngen pa 11 meter: $18 \mathrm{~cm}=0,18 \mathrm{~m}$

Wirclangde:
Afstand mellem skovle:
$150 \mathrm{fv}=274 \mathrm{~m}$ $0.18 \times 274=49 \mathrm{~m}$

