The objective of this project is to develop a methodology to predict the sound field in a room, based on a set of sparse measurements distributed about the room. We plan to explore the use of Physics Informed Neural Networks (PINNs) for the task of reconstructing the sound field, based on a set of sparse measurements. The main outcomes of this project are threefold:
To curate a data set for the training of neural networks in reverberant environments.
To examine the predictive potential of PINNs to interpolate and extrapolate acoustic data in fine spatial grids.
Examine the ability of the network to model the propagation of sound in free-fields, which is relevant for sound radiation and noise control.
Cite items from this project
DataCiteDataCite
3 Biotech3 Biotech
3D Printing in Medicine3D Printing in Medicine
3D Research3D Research
3D-Printed Materials and Systems3D-Printed Materials and Systems
4OR4OR
AAPG BulletinAAPG Bulletin
AAPS OpenAAPS Open
AAPS PharmSciTechAAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität HamburgAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)ABI Technik (German)
Academic MedicineAcademic Medicine
Academic PediatricsAcademic Pediatrics
Academic PsychiatryAcademic Psychiatry
Academic QuestionsAcademic Questions
Academy of Management DiscoveriesAcademy of Management Discoveries
Academy of Management JournalAcademy of Management Journal
Academy of Management Learning and EducationAcademy of Management Learning and Education
Academy of Management PerspectivesAcademy of Management Perspectives
Academy of Management ProceedingsAcademy of Management Proceedings
Academy of Management ReviewAcademy of Management Review